PHYSICAL REVIEW LETTERS - Journal - Bridge of Knowledge

Search

PHYSICAL REVIEW LETTERS

ISSN:

0031-9007

eISSN:

1079-7114

Disciplines
(Field of Science):

  • automation, electronics, electrical engineering and space technologies (Engineering and Technology)
  • biomedical engineering (Engineering and Technology)
  • civil engineering, geodesy and transport (Engineering and Technology)
  • materials engineering (Engineering and Technology)
  • astronomy (Natural sciences)
  • chemical sciences (Natural sciences)
  • physical sciences (Natural sciences)

Ministry points: Help

Ministry points - current year
Year Points List
Year 2024 200 Ministry scored journals list 2024
Ministry points - previous years
Year Points List
2024 200 Ministry scored journals list 2024
2023 200 Ministry Scored Journals List
2022 200 Ministry Scored Journals List 2019-2022
2021 200 Ministry Scored Journals List 2019-2022
2020 200 Ministry Scored Journals List 2019-2022
2019 200 Ministry Scored Journals List 2019-2022
2018 45 A
2017 45 A
2016 45 A
2015 45 A
2014 45 A
2013 45 A
2012 45 A
2011 45 A
2010 32 A

Model:

Hybrid

Points CiteScore:

Points CiteScore - current year
Year Points
Year 2022 17
Points CiteScore - previous years
Year Points
2022 17
2021 16.8
2020 15.2
2019 15.6
2018 15.4
2017 15.7
2016 15.8
2015 15.1
2014 14.4
2013 13.5
2012 13.1
2011 13.7

Impact Factor:

Log in to see the Impact Factor.

Filters

total: 38

  • Category
  • Year
  • Options

clear Chosen catalog filters disabled

Catalog Journals

Year 2011
  • All Nonclassical Correlations Can Be Activated into Distillable Entanglement
    Publication
    • M. Piani
    • S. Gharibian
    • G. Adesso
    • J. Calsamigilia
    • P. Horodecki
    • A. Winter

    - PHYSICAL REVIEW LETTERS - Year 2011

    We devise a protocol in which general nonclassical multipartite correlations produce a physically relevant effect, leading to the creation of bipartite entanglement. In particular, we show that the relative entropy of quantumness, which measures all nonclassical correlations among subsystems of a quantum system, is equivalent to and can be operationally interpreted as the minimum distillable entanglement generated between the system...

    Full text to download in external service

  • Collective Uncertainty Entanglement Test
    Publication

    - PHYSICAL REVIEW LETTERS - Year 2011

    For a given pure state of a composite quantum system we analyze the product of its projections onto aset of locally orthogonal separable pure states. We derive a bound for this product analogous to theentropic uncertainty relations. For bipartite systems the bound is saturated for maximally entangled statesand it allows us to construct a family of entanglement measures, we shall call collectibility. As thesequantities are experimentally...

    Full text to download in external service

  • Experimental Extraction of Secure Correlations from a Noisy Private State
    Publication
    • K. Dobek
    • M. Karpiński
    • R. Demkowicz-Dobrzański
    • K. Banaszek
    • P. Horodecki

    - PHYSICAL REVIEW LETTERS - Year 2011

    We report experimental generation of a noisy entangled four-photon state that exhibits a separation between the secure key contents and distillable entanglement, a hallmark feature of the recently established quantum theory of private states. The privacy analysis, based on the full tomographic reconstruction of the prepared state, is utilized in a proof-of-principle key generation. The inferiority of distillation-based strategies...

    Full text available to download

Year 2014
Year 2010
Year 2018
Year 2016
  • Correlated Particle Motion and THz Spectral Response of Supercritical Water
    Publication

    - PHYSICAL REVIEW LETTERS - Year 2016

    Molecular dynamics simulations of supercritical water reveal distinctly different distance-dependent modulations of dipolar response and correlations in particle motion compared to ambient conditions. The strongly perturbed H-bond network of water at supercritical conditions allows for considerable translationaland rotational freedom of individual molecules. These changes give rise to substantially different infrared spectra and...

    Full text to download in external service

  • No Quantum Realization of Extremal No-Signaling Boxes
    Publication

    - PHYSICAL REVIEW LETTERS - Year 2016

    The study of quantum correlations is important for fundamental reasons as well as for quantum communication and information processing tasks. On the one hand, it is of tremendous interest to derive the correlations produced by measurements on separated composite quantum systems from within the set of all correlations obeying the no-signaling principle of relativity, by means of information-theoretic principles. On the other hand,...

    Full text to download in external service

Year 2002
  • Direct detection of quantum entanglement
    Publication

    - PHYSICAL REVIEW LETTERS - Year 2002

    Basing on positive maps separability criterion we propose the experimentally viable, direct detection of quantum entanglement. It is efficient and does not require any a priori knowledge about the state. For two qubits it provides a sharp (i.e., “if and only if”) separability test and estimation of amount of entanglement. We view this method as a new form of quantum computation, namely, as a decision problem with quantum data structure.

  • Direct estimation of linear and nonlinear functionals of quantum state
    Publication
    • A. Ekert
    • C. M. Alves
    • D. K. Oi
    • M. Horodecki
    • P. Horodecki
    • L. C. Kwek

    - PHYSICAL REVIEW LETTERS - Year 2002

    We present a simple quantum network, based on the controlled-SWAP gate, that can extract certain properties of quantum states without recourse to quantum tomography. It can be used as a basic building block for direct quantum estimations of both linear and nonlinear functionals of any density operator. The network has many potential applications ranging from purity tests and eigenvalue estimations to direct characterization of...

Year 2020
Year 2015
  • Entanglement and Nonlocality are Inequivalent for Any Number of Parties
    Publication

    - PHYSICAL REVIEW LETTERS - Year 2015

    Understanding the relation between nonlocality and entanglement is one of the fundamental problems in quantum physics. In the bipartite case, it is known that these two phenomena are inequivalent, as there exist entangled states of two parties that do not violate any Bell inequality. However, except for a single example of an entangled three-qubit state that has a local model, almost nothing is known about such a relation in multipartite...

    Full text to download in external service

Year 2023
  • Kagome Lattice Promotes Chiral Spin Fluctuations
    Publication
    • K. Kolincio
    • M. Hirschberger
    • J. Masell
    • T. Arima
    • N. Nagaosa
    • Y. Tokura

    - PHYSICAL REVIEW LETTERS - Year 2023

    Dynamical spin fluctuations in magnets can be endowed with a slight bent toward left- or right-handed chirality by Dzyaloshinskii-Moriya interactions. However, little is known about the crucial role of lattice geometry on these chiral spin fluctuations and on fluctuation-related transport anomalies driven by the quantum-mechanical (Berry) phase of conduction electrons. Via thermoelectric Nernst effect and electric Hall effect experiments,...

    Full text available to download

Year 2003
Year 2000
Year 2017
Year 2008
  • No-local-broadcasting theorem for multipartite quantum correlations
    Publication

    We prove that the correlations present in a multipartite quantum state have an operational quantum character even if the state is unentangled, as long as it does not simply encode a multipartite classical probability distribution. Said quantumness is revealed by the new task of local broadcasting, i.e., of locally sharing preestablished correlations, which is feasible if and only if correlations are stricly classical. Our operational...

    Full text to download in external service

Year 2021

seen 1115 times