New concepts in microwave filters, phasers and multifunctional passive circuits for future RF systems
Details
- Financial Program Name:
- OPUS
- Organization:
- Narodowe Centrum Nauki (NCN) (National Science Centre)
- Agreement:
- UMO-2019/33/B/ST7/00889 z dnia 2020-08-03
- Realisation period:
- 2020-08-03 - 2023-08-02
- Project manager:
- prof. dr hab. inż. Michał Mrozowski
- Realised in:
- Department of Microwave and Antenna Engineering
- Project's value:
- 1 466 850.00 PLN
- Request type:
- National Research Programmes
- Domestic:
- Domestic project
- Verified by:
- Gdańsk University of Technology
Papers associated with that project
Filters
total: 18
Catalog Projects
Year 2024
-
An Optimized Ka-Band Low Profile Dual-Polarized Transmitarray Antenna With 2D Beam Switching
PublicationThis article presents an optimized dual-polarized transmitarray antenna (TA) designed for MIMO applications at the Ka-band, capable of switching beams in two directions. The antenna aperture uses a small unit cell with three layers of Taconic RF-35 dielectric substrates, which can be easily fabricated using PCB technology. The unit cell achieved a 360-degree phase shift and a transmission magnitude exceeding –0.4 dB at 28 GHz....
-
Frequency-Variant Double-Zero Single-Pole Reactive Coupling Networks for Coupled-Resonator Microwave Bandpass Filters
PublicationIn this work, a family of frequency-variant reactive coupling (FVRC) networks is introduced and discussed as new building blocks for the synthesis of coupled-resonator bandpass filters with real or complex transmission zeros (TZs). The FVRC is a type of nonideal frequency-dependent inverter that has nonzero elements on the diagonal of the impedance matrix, along with a nonlinear frequency-variation profile of its transimpedance...
-
Highly-Compact Dual-Band Bandpass Waveguide Filter Based on Cross-Shaped Frequency-Dependent Coupling
PublicationThis work reports the design of an original class of highly-compact dual-band bandpass filter based on dual-mode waveguide resonators inter-coupled through a novel type of frequency-dependent coupling (FDC). The devised FDC consists of a cross-shaped metallic structure placed in the broad wall of a rectangular waveguide. This FDC produces two additional poles and three extra transmission zeros (TZs). Specifically, each pole is...
-
RF Input-Quasi-Reflectionless Dispersive-Delay Structures Based on Complementary-Diplexer Circuits
PublicationA class of RF dispersive-delay structures (DDSs) with input-quasi-reflectionless behavior is reported. It is based on the exploitation of complementary-diplexer circuit networks, in which the out-of-band RF-input-power echoes reflected by the main bandpass-filter-(BPF)-type channel are dissipated by the resistively-terminated auxiliary bandstop-filter-(BSF)-type channel. Specifically, it is shown that the influence of the absorptive...
Year 2023
-
A Multifunctional Microwave Filter/Sensor Component Using a Split Ring Resonator Loaded Transmission Line
PublicationThis research is focused on the design and realiza2 tion of a microwave component with multifunctional filter/sensor 3 operation using a resonator-loaded transmission line (TL). It is 4 shown that while the structure acts as a bandstop filter, the 5 phase of the reflection coefficient from the loading resonator(s) 6 on a movable layer can be used for displacement sensing, thus 7 allowing for combining filtering with sensing in...
-
A Wideband Rotary-Joint-Free H-Plane Horn Antenna With 360° Steerable Radiation Pattern Using Gap Waveguide Technology
PublicationConsidering the limitations of electronically steerable antennas such as limited steering span, gain degradation for large steering angles, complexity, and cost, this article is focused on the design of a simple mechanically steerable H-plane horn antenna. It is shown that since there is no need for an electrical connection between the top and bottom sections of a gap waveguide (GWG), if a sectoral horn is properly designed and realized...
-
Inline Waveguide Filter With Compact Frequency-Dependent Coupling Producing Two Additional Poles and Three Transmission Zeros
PublicationThis work reports a compact frequency-dependent coupling (FDC) structure introduced in a rectangular waveguide, which allows to generate two additional in-band transmission poles and three transmission zeros (TZs). This serves to increase the order/selectivity of the waveguide bandpass filter in a compact inline topology, thus without the need for any additional space/volume or cross coupling. The proposed FDC consists of a partial-height...
-
Inline Waveguide Filter With Transmission Zeros Using a Modified-T-Shaped-Post Coupling Inverter
PublicationThis letter reports the design techniques for a class 2 of inline waveguide bandpass filters with sharp-rejection capabil3 ities at the lower stopband based on a novel nonlinear-frequency4 variant-coupling (NFVC) structure. The proposed NFVC consists 5 of a modified-T-shaped metallic post (MTP) that is placed at the 6 center of the waveguide broad wall with its open arms lying 7 along the waveguide width. The engineered NFVC structure 8...
-
Miniaturized Inline Bandpass Filters Based on Triple-Mode Integrated Coaxial-Waveguide Resonators
PublicationThis work presents a design technique to implement miniaturized cross-coupled bandpass filters in inline physical configurations based on triple-mode resonators. Triple-mode resonances are obtained by using integrated coaxial-waveguide cavity resonators. They consist of two coaxial conducting posts placed in the sidewalls of a rectangular waveguide cavity. In the proposed triplet, a transmission zero (TZ) can be positioned at any...
-
Multifunctional Bandpass Filter/Displacement Sensor Component
PublicationThis paper presents the design and realization of a multifunctional bandpassfilter/displacement-sensor using an edge-coupled microstrip bandpass filter loaded by a pair of split ring resonators (SRRs). It is shown that while the structure acts as a bandpass filter at its operating frequency, the phase of the reflection coefficient from a movable loading resonator at the resonance frequency of the resonator can be used for displacement...
-
Pin-on-Substrate Gap Waveguide: An Extremely Low-Cost Realization of High-Performance Gap Waveguide Components
PublicationConsidering the limitations of currently available technologies for the realization of microwave components and antennas, a trade-off between different factors including the efficiency and fabrication cost is required. The main objective of this letter is to propose a novel method for the realization of gap waveguides (GWGs) that take advantage of conventional PCB fabrication technology, thus are low cost and light weight. Moreover,...
-
RF Multi-Functional Input-Reflectionless Dispersive-Delay Structure With Sharp-Rejection Filtering Using Channelization Techniques
PublicationA class of RF multi-functional input-reflectionless dispersive-delay structure (DDS) with linear-type in-band groupdelay variation and sharp-rejection bandpass-filtering capability is reported. It exploits a two-branch-channelized/balanced-type circuit with similar low-order reflective DDS units inside its channels, which are connected through input/output 3-dB quadrature wideband couplers. The adopted DDS unit is based on a coupledresonator...
Year 2022
-
Dispersive Delay Structures With Asymmetric Arbitrary Group-Delay Response Using Coupled-Resonator Networks With Frequency-Variant Couplings
PublicationThis article reports the design of coupled-resonatorbased microwave dispersive delay structures (DDSs) with arbitrary asymmetric-type group delay response. The design process exploits a coupling matrix representation of the DDS circuit as a network of resonators with frequency-variant couplings (FVCs). The group delay response is shaped using complex transmission zeros (TZs) created by dispersive cross-couplings. We also present an...
-
Displacement Sensors Based on the Phase of the Reflection Coefficient of a Split Ring Resonator Loaded Transmission Line
Publication— In this paper, novel displacement sensors using a microstrip loaded with a pair of split ring resonators (SRRs) are proposed. It is shown that the phase of the reflection coefficient from the loading SRRs can be used for displacement sensing. The paper also proposes a differential version of the sensor that benefits from a higher sensitivity and reference zero, which is useful for alignment purposes. It is further shown that...
-
Inline Microwave Filters With N+1 Transmission Zeros Generated by Frequency-Variant Couplings: Coupling-Matrix-Based Synthesis and Design
PublicationA general coupling-matrix-based synthesis methodology for inline Nth-order microwave bandpass filters (BPFs) with frequency-variant reactive-type couplings that generate N+1 transmission zeros (TZs) is presented in this brief. The proposed approach exploits the formulation of the synthesis problem as three inverse nonlinear eigenvalue problems (INEVPs) so that the coupling matrix is built from their sets of eigenvalues. For this...
-
Low-Loss Mechanically Tunable Resonator and Phase Shifters in Groove Gap Waveguide Technology
PublicationThis research is focused on the design and realization of high-performance high-power variable phase shifters in groove gap waveguide technology. Specifically, it is shown that the unique characteristic of groove gap waveguides, which is its proper operation without the need for electrical connection between the top and bottom sections of the waveguide, can be used to design mechanically tunable devices. Using the proposed method,...
Year 2021
-
Extending the Frequency Limit of Microstrip-Coupled CSRR Using Asymmetry
PublicationAbstract— This article explains the frequency limitation in designing microstrip circuits based on a complementary split-ring resonator (CSRR) and reports a novel technique for increasing its operating frequency, which makes the CSRR suitable for high-frequency applications. This study helps in synthesizing the dimensions of symmetric CSRR (SCSRR) and asymmetric CSRR (ACSRR) circuits, which shows the applicability of the proposed...
-
Inverse Nonlinear Eigenvalue Problem Framework for the Synthesis of Coupled-Resonator Filters With Nonresonant Nodes and Arbitrary Frequency-Variant Reactive Couplings
PublicationA novel, general circuit-level description of coupledresonator microwave filters is introduced in this article. Unlike well-established coupling-matrix models based on frequency-invariant couplings or linear frequency-variant couplings (LFVCs), a model with arbitrary reactive frequencyvariant coupling (AFVC) networks is proposed. The engineered formulation is more general than prior-art ones—with the only restriction that the coupling...
seen 2167 times