A Theoretical and Experimental Study of Moderate Temperature Alfa Type Stirling Engines - Publication - MOST Wiedzy

Search

A Theoretical and Experimental Study of Moderate Temperature Alfa Type Stirling Engines

Abstract

The Stirling engine is a device that allows conversion of thermal energy into mechanical energy with relatively high efficiency. Existing commercial designs are mainly based on the usage of high temperature heat sources, whose availability from renewable or waste heat sources is significantly lower than that of moderate temperature sources. The paper presents the results of experimental research on a prototype alpha type Stirling engine powered by a moderate temperature source of heat. Obtained results enabled calibration of the evaluated theoretical model of the Stirling engine. The model of the engine has been subsequently used for the analysis of regenerator effectiveness influenced by the charge pressure and the heating temperature. Performed study allowed to determine further development directions of the prototype engine to improve its power and efficiency. As a result of optimization, worked out design will potentially increase the indicated efficiency up to 19.5% (5.5% prototype) and the indicated power up to 369 W (114 W prototype).

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
ENERGIES no. 13, pages 1622 - 1822,
ISSN: 1996-1073
Language:
English
Publication year:
2020
Bibliographic description:
Kropiwnicki J., Furmanek M.: A Theoretical and Experimental Study of Moderate Temperature Alfa Type Stirling Engines// ENERGIES -Vol. 13,iss. 7 (2020), s.1622-1822
DOI:
Digital Object Identifier (open in new tab) 10.3390/en13071622
Bibliography: test
  1. Invernizzi, C.M.; Ahmed Sheikh, N. High-efficiency small-scale combined heat and power organic binary Rankine cycles. Energies 2018, 11, 994. [CrossRef] open in new tab
  2. Ziabasharhagh, M.; Mahmoodi, M. Numerical solution of beta-type Stirling engine by optimizing heat regenerator for increasing output power and efficiency Numerical Solution of Beta-type Stirling Engine by Optimizing Heat Regenerator for Increasing Output Power and Efficiency. J. Basic Appl. Sci. Res. 2016, 22, 1395-1406.
  3. Idroas, M.Y.; Farid, N.A.; Zainal, Z.A.; Noriman, K.; Azman, M. Mechanical power assessment of an alpha V-type stirling engine converted diesel engine. Int. J. Mech. Mater. Eng. 2011, 6, 160-166.
  4. Petrescu, S.; Costea, M.; Harman, C.; Florea, T. Application of the Direct Method to irreversible Stirling cycles with finite speed. Int. J. Energy Res. 2002, 26, 589-609. [CrossRef] open in new tab
  5. Finkelstein, T.; Organ, A.J. Air Engines: The History, Science and Reality of the Perfect Engine; American Society of Mechanical Engineers: Fairfield, CT, USA; ASME Press: New York, NY, USA, 2009; ISBN 9780791801710. open in new tab
  6. Buoro, D.; Casisi, M.; Pinamonti, P.; Reini, M. Optimal synthesis and operation of advanced energy supply systems for standard and domotic home. Energy Convers. Manag. 2012, 60, 96-105. [CrossRef] open in new tab
  7. Thomas, B. Benchmark testing of Micro-CHP units. Appl. Therm. Eng. 2008, 28, 2049-2054. [CrossRef] open in new tab
  8. Kropiwnicki, J. Design and applications of modern Stirling engines. Combust. Engines 2013, 243-249. open in new tab
  9. Kropiwnicki, J. Analysis of start energy of Stirling engine type alpha. Arch. Thermodyn. 2019, 40, 243-259.
  10. Kropiwnicki, J.; Szewczyk, A. Stirling Engines Powered by Renewable Energy Sources. Appl. Mech. Mater. 2016, 831, 263-269. [CrossRef] open in new tab
  11. Valenti, G.; Silva, P.; Fergnani, N.; Di Marcoberardino, G.; Campanari, S.; Macchi, E. Experimental and numerical study of a micro-cogeneration Stirling engine for residential applications. Energy Procedia 2014, 45, 1235-1244. [CrossRef] open in new tab
  12. Lane, N.; Beale, W. A biomass-fired 1 kWe Stirling engine generator and its applications in South Africa. In Proceedings of the 9th International Stirling Engine Conference, Johannesburg, South Africa, 2-4 June 1999.
  13. Cheng, C.H.; Yang, H.S.; Keong, L. Theoretical and experimental study of a 300-W beta-type Stirling engine. Energy 2013, 59, 590-599. [CrossRef] open in new tab
  14. Gheith, R.; Aloui, F.; Tazerout, M.; Ben Nasrallah, S. Experimental investigations of a gamma Stirling engine. Int. J. Energy Res. 2012, 36, 1175-1182. [CrossRef] open in new tab
  15. Karabulut, H.; Yücesu, H.S.; Çinar, C.; Aksoy, F. An experimental study on the development of a β-type Stirling engine for low and moderate temperature heat sources. Appl. Energy 2009, 86, 68-73. [CrossRef] open in new tab
  16. Kongtragool, B.; Wongwises, S. Performance of low-temperature differential Stirling engines. Renew. Energy 2007, 32, 547-566. [CrossRef] open in new tab
  17. Li, T.; Tang, D.; Li, Z.; Du, J.; Zhou, T.; Jia, Y. Development and test of a Stirling engine driven by waste gases for the micro-CHP system. Appl. Therm. Eng. 2012, 33-34, 119-123. [CrossRef] open in new tab
  18. Sripakagorn, A.; Srikam, C. Design and performance of a moderate temperature difference Stirling engine. Renew. Energy 2011, 36, 1728-1733. [CrossRef] open in new tab
  19. Qian, X.; Lee, S.; Chandrasekaran, R.; Yang, Y.; Caballes, M.; Alamu, O.; Chen, G. Electricity evaluation and emission characteristics of poultry litter co-combustion process. Appl. Sci. 2019, 9, 4116. [CrossRef] open in new tab
  20. Sowale, A.; Kolios, A.J.; Fidalgo, B.; Somorin, T.; Parker, A.; Williams, L.; Collins, M.; McAdam, E.; Tyrrel, S. Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system. Energy Convers. Manag. 2018, 165, 528-540. [CrossRef] open in new tab
  21. Tlili, I.; Timoumi, Y.; Nasrallah, S. Ben Analysis and design consideration of mean temperature differential Stirling engine for solar application. Renew. Energy 2008, 33, 1911-1921. [CrossRef] open in new tab
  22. Bataineh, K.M. Numerical thermodynamic model of alpha-type Stirling engine. Case Stud. Therm. Eng. 2018, 12, 104-116. [CrossRef] Energies 2020, 13, 1622 21 of 21 open in new tab
  23. García, M.T.; Trujillo, E.C.; Godiño, J.A.V.; Martínez, D.S. Thermodynamic model for performance analysis of a Stirling engine prototype. Energies 2018, 11, 2655. [CrossRef] open in new tab
  24. Organ, A.J. The Regenerator and the Stirling Engine; Mechanical Engineering Publications: London, UK, 1997; ISBN 1860580106.
  25. Furmanek, M.; Kropiwnicki, J. Hydraulic resistance analyses of selected elements of the prototype Stirling engine. Arch. Thermodyn. 2019, 40, 123-136.
  26. Mou, J.; Hong, G. Startup mechanism and power distribution of free piston Stirling engine. Energy 2017, 123, 655-663. [CrossRef] open in new tab
  27. Tavakolpour-Saleh, A.R.; Zare, S.H.; Bahreman, H. A novel active free piston Stirling engine: Modeling, development, and experiment. Appl. Energy 2017, 199, 400-415. [CrossRef] open in new tab
  28. Kwankaomeng, S.; Silpsakoolsook, B.; Savangvong, P. Investigation on stability and performance of a free-piston Stirling engine. Energy Procedia 2014, 52, 598-609. [CrossRef] open in new tab
  29. Kropiwnicki, J. Application of Stirling Engine Type Alpha Powered by the Recovery Energy on Vessels. Pol. Marit. Res. 2020, 27, 96-106. open in new tab
  30. Ranieri, S.; Prado, G.A.O.; MacDonald, B.D. Efficiency reduction in stirling engines resulting from sinusoidal motion. Energies 2018, 11, 2887. [CrossRef] open in new tab
  31. Chmielewski, A.; Gumiński, R.; Mączak, J. Analysis of isothermal thermodynamic processes in the Stirling engine. Proc. Inst. Veh. 2016, 2/106, 13-20. open in new tab
  32. Kamen, D.; Langenfeld, C.C.; Bhat, P.; Smith, S.B. Stirling Cycle Machine. Available online: https: //www.google.com/patents/US8474256 (accessed on 12 May 2019). open in new tab
  33. Wrona, J.; Prymon, M. Mathematical Modeling of the Stirling Engine. Procedia Eng. 2016, 157, 349-356.
  34. Thombare, D.G.; Verma, S.K. Technological development in the Stirling cycle engines. Renew. Sustain. Energy Rev. 2008, 12, 1-38. [CrossRef] open in new tab
  35. Cichy, M.; Kneba, Z.; Kropiwnicki, J. Causality in Models of Thermal Processes in Ship Engine Rooms with the Use of Bond Graph (BG) Method. Pol. Marit. Res. 2017, 24, 32-37. [CrossRef] open in new tab
  36. Cichy, M.; Kropiwnicki, J.; Kneba, Z. A Model of Thermal Energy Storage According to the Convention of Bond Graphs (Bg) and State Equations (Se). Pol. Marit. Res. 2015, 22, 41-47. [CrossRef] open in new tab
  37. Babaelahi, M.; Sayyaadi, H. Modified PSVL: A second order model for thermal simulation of Stirling engines based on convective-polytropic heat transfer of working spaces. Appl. Therm. Eng. 2015, 85, 340-355. [CrossRef] open in new tab
  38. Kahaleras, M.; Lanzetta, F.; Layes, G.; Nika, P. Friction Factor and Regenerator Effectiveness in An Oscillating Gas Flow. In Proceedings of the 5th Internantional conference on Heat Transfer and Fluid Flow in Microscale, Marseille, France, 22-26 April 2014. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 115 times

Recommended for you

Meta Tags