Aeration Process in Bioreactors as the Main Energy Consumer in a Wastewater Treatment Plant. Review of Solutions and Methods of Process Optimization - Publication - MOST Wiedzy


Aeration Process in Bioreactors as the Main Energy Consumer in a Wastewater Treatment Plant. Review of Solutions and Methods of Process Optimization


Due to the key role of the biological decomposition process of organic compounds in wastewater treatment, a very important thing is appropriate aeration of activated sludge, because microorganisms have to be supplied with an appropriate amount of oxygen. Aeration is one of the most energy-consuming processes in the conventional activated sludge systems of wastewater treatment technology (may consume from 50% to 90% of electricity used by a plant), which makes it the most cost-generating process incurred by treatment plants. The paper presents the construction of aeration systems, their classification as well as parameters and factors that significantly affect the aeration process e.g., oxygen transfer effciency, diffuser fouling, methods of dealing with diffuser fouling, diffuser selection. Additionally, there are briefly presented “smart control” systems in wastewater treatment and effect of application control strategy based on Supervisory Control and Data Acquisition system connected with the decrease in the energy consumption for aeration of bioreactors with activated sludge. It is noted that before the process is optimized, the system should be equipped with suitable metering devices. Only when relevant data is available, the improvements can be carried out. However, it’s important, that the operator should regularly maintain good condition and high effciency of diffusers.


  • 8


  • 4

    Web of Science

  • 5



artykuły w czasopismach
Published in:
Processes no. 7, pages 311 - 332,
ISSN: 2227-9717
Publication year:
Bibliographic description:
Drewnowski J., Remiszewska-Skwarek A., Duda S., Łagód G.: Aeration Process in Bioreactors as the Main Energy Consumer in a Wastewater Treatment Plant. Review of Solutions and Methods of Process Optimization// Processes -Vol. 7,iss. 5 (2019), s.311-332
Digital Object Identifier (open in new tab) 10.3390/pr7050311
Bibliography: test
  1. Spencer, D.; Murdoch, F. The Role of Respirometry in Maximising Aerobic Treatment Plant Efficiency; Strathkelvin Instruments Ltd.: Glasgow, UK, 2002. open in new tab
  2. Bodington, V.; Langford, A.; Dooley, M.; Diamond, K. Cardiff WWTW Aeration Optimisation through Scientific Control; Strathkelvin Instruments Ltd.: Glasgow, UK, 2009. Processes 2019, 7, 311 17 of 21 open in new tab
  3. Godniok, M.; Korczak, K.; Zdebik, D. Metodyczne aspekty analizy aktywności oddechowej mikroorganizmów osadu czynnego w odniesieniu do możliwości optymalizacji pracy biologicznej oczyszczalniścieków/ Methodical aspects of analysis of respiratory activity of microorganisms in the activated sludge, in reference to the possibility of biological treatment plant work optimization. Prace Naukowe GIG 2010, 1, 5-15.
  4. Quant, B.; Remiszewska-Skwarek, A.; Manini, K. Dezintegracja niskotemperaturowa jako skuteczny sposób kondycjonowania osadówściekowych. In Polska InżynieriaŚrodowiska; Dudzińska, M.R., Pawłowski, A., Eds.; Komitetu InżynieriiŚrodowiska PAN: Lublin, Poland, 2012; Volume 99, pp. 131-146.
  5. Woźniak-Vecchie, R. Biologiczne oczyszczanieścieków. Sztuka napowietrzania. Mag. Instal. 2014, 187, 46-48.
  6. Dereszewska, A.; Cytawa, S. Zastosowanie sondy do pomiaru zawartości azotu amonowego i azotanowego jako element sterowania procesem oczyszczaniaścieków/Implementation of the ammonium and nitrate sensor as an element of wastewater treatment process control. Econ. Menag. 2012, 1, 127-136. open in new tab
  7. Bennett, A. Wastewater treatment: Bubbling up for major energy saving. Filtr. Separat. 2011, 48, 42-43. open in new tab
  8. Water Environment Federation. Energy Conservation in Wastewater Treatment Facilities-Manual and Practice; No 32; WEF Press: Alexandria, VA, USA, 2009. open in new tab
  9. Turunen, V.; Sorvari, J.; Mikola, A. A decision support tool for selecting the optimal sewage sludge treatment. Chemosphere 2018, 193, 521-529. [CrossRef] open in new tab
  10. Flores-Alsina, X.; Arnell, M.; Amerlinck, Y.; Corominase, L.; Gernaey, K.V.; Guo, L.; Lindbloma, E.; Nopens, I.; Porro, J.; Shaw, A.; et al. Balancing effluent quality, economic cost and greenhouse gas emissions during the evaluation of (plant-wide) control/operational strategies in WWTPs. Sci. Total Environ. 2014, 466-467, 616-624. [CrossRef] [PubMed] open in new tab
  11. Mannina, G.; Cosenza, A.; Gori, R.; Garrido-Baserba, M.; Sobhani, R.; Rosso, D. Greenhouse gas emissions from wastewater treatment plants on a plantwide scale: Sensitivity and uncertainty analysis. J. Environ. Eng. 2016, 142, 04016017. [CrossRef] open in new tab
  12. Mannina, G.; Ekama, G.; Caniani, D.; Cosenza, A.; Esposito, G.; Gori, R.; Garrido-Baserba, M.; Rosso, D.; Olsson, G. Greenhouse gases from wastewater treatment-A review of modelling tools. Sci. Total Environ. 2016, 551-552, 254-270. [CrossRef] open in new tab
  13. Barbu, M.; Vilanova, R.; Meneses, M.; Santin, I. Global evaluation of wastewater treatment plants control strategies including CO 2 emissions. IFAC Pap OnLine 2017, 50, 12956-12961. [CrossRef] open in new tab
  14. Solon, K.; Flores-Alsina, X.; Kazadi Mbamba, C.; Ikumi, D.; Volcke, E.I.P.; Vaneeckhaute, C.; Ekama, G.; Vanrolleghem, P.A.; Batstone, D.J.; Gernaey, K.V.; et al. Plantwide modelling of phosphorus transformations in wastewater treatment systems: Impacts of control an operational strategies. Water Res. 2017, 113, 97-110. [CrossRef] open in new tab
  15. Arnell, M.; Rahmberg, M.; Oliveira, F.; Jeppsson, U. Multiobjective performance assessment of wastewater treatment plants combining plant-wide process models and life cycle assessment. J. Water Clim. Chang. 2017, 8, 715-729. [CrossRef] open in new tab
  16. Zaborowska, E.; Czerwionka, K.; Makinia, J. Strategies for achieving energy neutrality in biological nutrient removal systems-A case study of the Slupsk WWTP (northern Poland). Water Sci. Technol. 2017, 75, 727-740. [CrossRef] [PubMed] open in new tab
  17. Dominguez, D.; Gujer, W. Evolution of a wastewater treatment plant challenges traditional design concepts. Water Res. 2006, 40, 1389-1396. [CrossRef] [PubMed] open in new tab
  18. Drewnowski, J.; Remiszewska-Skwarek, A.; Fernandez-Morales, F.J. Model based evaluation of plant improvement at a large wastewater treatment plant (WWTP). J. Environ. Sci. Health A 2018, 53, 1-7. [CrossRef] open in new tab
  19. Drewnowski, J.; Remiszewska-Skwarek, A.; Fudala-Ksiazek, S.; Luczkiewicz, A.; Kumari, S.; Bux, F. The evaluation of COD fractionation and modeling as a key factor for appropriate optimization and monitoring of modern cost-effective activated sludge systems. J. Environ. Sci. Health A 2019, 54, 1-7. [CrossRef] [PubMed] open in new tab
  20. Heidrich, Z.; Witkowski, A. Wybór systemu napowietrzania w procesie oczyszczaniaścieków metoda osadu czynnego. Inż. Ekol. 2006, 14, 12-15.
  21. Łomotowski, J.; Szpindor, A. Nowoczesne Systemy OczyszczaniaŚcieków; Arkady: Warszawa, Poland, 1999.
  22. Bever, J.; Stein, A.; Teichmann, H. Zaawansowane Metody OczyszczaniaŚcieków; Oficyna Wydawnicza Projprzem-Eko: Bydgoszcz, Poland, 1997.
  23. Longo, S.; Mirko, B.A.; Bongards, M.; Chaparro, A.; Cronrath, A.; Fatone, F.; Lema, J.M.; Mauricio-Iglesias, M.; Soares, A.; Hospido, A. Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Appl. Energy 2016, 179, 1251-1268. [CrossRef] open in new tab
  24. Guerrini, A.; Romano, G.; Indipendenza, A. Energy Efficiency Drivers in Wastewater Treatment Plants: A Double Bootstrap DEA Analysis. Sustainability 2017, 9, 1126. [CrossRef] open in new tab
  25. Janiak, K. Stopień wykorzystania tlenu i czynniki na niego wpływające: Część I/ Oxygen transfer efficiency and its influencing factors: Part 1. Forum Eksploatatora 2012, 4, 44-49.
  26. German, A.T.V. Rules and Standards. In ATV M 209E, Measurement of the Oxygen Transfer Inactivated Sludge Aeration Tanks with Clean Water and in Mixed Liquor; Gesellschaft zur Förderung der Abwassertechnik e.V. (GFA): Hennef, Germany, 1996. open in new tab
  27. Chern, J.M.; Chou, S.R.; Shang, C.S. Effects of impurities on oxygen transfer rates in diffused aeration system. Water Res. 2001, 35, 3041-3048. [CrossRef] open in new tab
  28. US EPA. Development of Standard Procedures for Evaluating Oxygen Transfer Devices; EPA-600/2-83-102;
  29. Stenstrom, M.K.; Gilbert, R.G. Effects of α, β and θ factor upon the design, specification and operation of aeration systems. Water Res. 1981, 15, 643-654. [CrossRef] open in new tab
  30. Downing, A.L.; Bayley, R.W.; Boon, A.G. The performance of mechanical aerators. J. Inst. Sewage Purif. 1960, 3, 231-242.
  31. Eckenfelder, W.W.; Raymond, L.W.; Lauria, D.T. Effect of various organic substances on oxygen absorption efficiency. Sewage Ind. Wastes 1956, 28, 1357-1364. open in new tab
  32. Fisher, M.J.; Boyle, W.C. Effect of anaerobic anoxic selectors on oxygen transfer in wastewater. Wat. Environ. Res. 1999, 71, 84-93. [CrossRef] open in new tab
  33. Hwang, H.J.; Stenstrom, M.K. The Effect of Surface Active Agent on Oxygen Transfer; UCLA-ENG-79-30; University of California: Los Angeles, CA, USA, 1979.
  34. Krampe, J.; Krauth, K. Oxygen transfer into activated sludge with high MLSS concentrations. Water Sci. Technol. 2003, 47, 297-303. [CrossRef] [PubMed] open in new tab
  35. Rosso, D.; Larson, L.E.; Stenstrom, M.K. Aeration of large-scale municipal wastewater treatment plants state of the art. Water Sci. Technol. 2008, 57, 973-978. [CrossRef] open in new tab
  36. Mueller, J.A.; Boyle, W.C.; Pöpel, H.J. Aeration: Principles and Practice; CRC Press: Boca Raton, FL, USA, 2002. open in new tab
  37. Wagner, M.; Krause, S. Investigation of oxygen transfer rates in full scale membrane bioreactors. Water Sci. Technol. 2003, 47, 313-319. [CrossRef] open in new tab
  38. Fröse, G. Praxiserfahrungen mit dem ATV-Merkblatt M 209 und Vorstellung des neuen europäischen Norm-Entwurfes DIN EN 12255-15 zur Messung der Sauerstoffzufuhr in Reinwasser. Schriftenreihe WAR 2001, 134, 57-70. open in new tab
  39. Piotrowski, R. Wielopoziomowy system sterowania stężeniem tlenu I wyznaczania trajektorii zadanej stężenia tlenu w biologicznej oczyszczalniścieków/Multilevel control system for dissolved oxygen control and determining the set point trajectory of dissolved oxygen in a biological watewater treatment plant. Pomiary Automatyka Robotyka 2018, 4, 19-23. [CrossRef] open in new tab
  40. US EPA. Fine Pore Aeration Systems-Design Manual; open in new tab
  41. Hung, C.H.; Boyle, W.C. The effect of acid cleaning on a fine pore ceramic diffuser aeration, system. Water Sci. Technol. 2001, 44, 211-218. [CrossRef] [PubMed] open in new tab
  42. Szetela, R.; Janiak, K.; Balbierz, P.; Knap, M. Optymalizacja pracy systemu napowietrzania bloków biologicznych pod kątem minimalizacji kosztów napowietrzania Wrocławskiej OczyszczalniŚcieków cz. 3, Raport serii SPR nr 7/2012; Instytut Inżynierii OchronyŚrodowiska, Politechnika Wrocławska: Wrocław, Poland, 2012.
  43. Janiak, K. Stopień wykorzystania tlenu i czynniki na niego wpływające: Część II Zarastanie dyfuzorów/ Oxygen transfer efficiency and its influencing factors Part 2: Diffuser's fouling. Forum Eksploatatora 2012, 5, 30-36.
  44. Frey, W.; Thonhauser, C. Clogging and cleaning of fine-pore membrane diffusers. Water Sci. Technol. 2004, 50, 69-77. [CrossRef] open in new tab
  45. Hansen, E.J.; Estevez, M.A.; Es-Said, O.S. On the shrinking and hardening of EPDM rubber membranes in water sanitation filtration tanks. Eng. Fail. Anal. 2004, 11, 361-367. [CrossRef] open in new tab
  46. Wagner, M.; Hoessle, V.R. Biological coating of EPDM-membranes of fine bubble diffusers. Water Sci. Technol. 2004, 50, 79-85. [CrossRef] [PubMed] open in new tab
  47. Libra, J.A.; Sahlmann, C.; Schuchardt, A.; Handschag, J.; Wiesmann, U.; Gnirss, R. Evaluation of ceramic and membrane diffusers under operating conditions with the dynamic of gas method. Water Environ. Res. 2005, 77, 447-454. [CrossRef] open in new tab
  48. Szetela, R.; Janiak, K.; Balbierz, P.; Knap, M. Ekspertyza techniczna-Badania laboratoryjne stopnia wykorzystania tlenu oraz strat ciśnienia dyfuzorów wymontowanych z nowo wybudowanych reaktorów tlenowych Wrocławskiej Oczyszczalní Scieków; Instytut Inżynierii OchronyŚrodowiska, Politechnika Wrocławska: Wrocław, Poland, 2011.
  49. Thomas, C.D.; Barratt, P.A.; Holmes, R.B. Systemy Oxy-Dep Vsa, Nowe rewolucyjne podejście do kwestii napowietrzania w procesie oczyszczaniaścieków. Inży. Ekol. 2006, 14, 17-29.
  50. EPA 832-F-99-065 Wastewater Technology Fact Sheet-Fine Bubble Aeration; EPA: Washington, DC, USA, 1999. open in new tab
  51. Ovezea, A. Saving energy: Using fine bubble diffusers. Filtr. Sep. 2009, 46, 24-27. [CrossRef] open in new tab
  52. Roman, M.D.; Muresan, M.V. Analysis of oxygen requirements and transfer efficiency in a wastewater treatment plant. Int. J. Latest Res. Sci. Technol. 2014, 3, 30-33. open in new tab
  53. Garrido-Baserba, M.; Asvapathanagul, P.; McCarthy, G.W.; Gocke, T.E.; Olson, B.H.; Park, H.; Al-Omari, A.; Murthy, S.; Bott, C.B.; Wett, B.; et al. Linking biofilm growth to fouling and aeration performance of fine-pore diffuser in activated sludge. Water Res. 2016, 90, 317-328. [CrossRef] open in new tab
  54. Garrido-Baserba, M.; Sobhani, R.; Asvapathanagul, P.; McCarthy, G.W.; Gocke, T.E.; Olson, B.H.; Odize, V.; Al-Omari, A.; Murthy, S.; Nifong, A.; et al. Modelling the link amongst fine-pore diffuser fouling, oxygen transfer efficiency, and aeration energy intensity. Water Res. 2017, 111, 127-139. [CrossRef] open in new tab
  55. Sadecka, Z.; Płuciennik-Koropczuk, E.; Sieciechowicz, A. Modele biokinetyczne ASM/Biokinetic models ASM. Zeszyty Naukowe. InżynieriaŚrodowiska Uniwersytet Zielonogórski 2011, 141, 113-125.
  56. Henze, M.; Gujer, W.; Mino, T.; Loosdrecht, M. Activated Sludge Models ASM1, ASM2, ASM2D and ASM3; open in new tab
  57. Edited by IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment; IWA Publishing: London, UK, 2000. open in new tab
  58. Olsson, G.; Newell, B. Wastewater Treatment Systems. Modeling, Diagnosis and Control; IWA Publishing: London, UK, 1999. open in new tab
  59. Szetela, R. Model Dynamiczny Oczyszczalniścieków z Osadem Czynnym;
  60. Prace Naukowe Instytutu Ochroný Srodowiska Politechniki Wrocławskiej, 64, Monografie 32; Wydawnictwo Politechniki Wrocławskiej: Wrocław, Poland, 1990. open in new tab
  61. Urban, R.; Szetela, R. Calibration of the activated sludge model with genetic algorithms. Part i. Calibration results. Environ. Prot. Eng. 2007, 33, 31-49.
  62. Cawley, G.; Janarek, G.; Haylock, M.; Dorling, S. Predictive uncertainty in environmental modelling. Neural Netw. 2007, 20, 537-549. [CrossRef] [PubMed] open in new tab
  63. Bsdys, M.A.; Díaz Maíquez, J. Application of Fuzzy Model Predictive Control to the Dissolved Oxygen Concentration Tracking in an Activated Sludge Process. In Proceedings of the 15th IFAC World Congress, Barcelona, Spain, 21-26 July 2002. open in new tab
  64. Szetela, R.; Dymaczewski, Z. Modyfikacja obecnej postaci modelu osadu czynnego ASM 2d/ Modification of the present form of the ASM 2d acivated sludge model. Ochr.Środ. 2002, 1, 3-8.
  65. Gujer, W.; Henze, M.; Mino, T.; Matsuo, T.; Wentzel, M.C.; Marais, G.V.R. The Activated Sludge Model. Water Sci. Technol. 1995, 31, 1-11. [CrossRef] open in new tab
  66. Henze, M.; Gujer, W.; Mino, T.; Matsuo, T.; Wentzel, M.C.; Marais, G.V.R.; Van Loosdrecht, C.M. Activated sludge model No.2D, ASM2D. Water Sci. Technol. 1999, 39, 165-182. [CrossRef] open in new tab
  67. Winkler, S.; Müller-Rechberger, H.; Nowak, O.; Svardal, K.; Wandl, G. A New approach towards model ling of the carbon degradation cycle AT two-stage activated sludge plants. Water Sci. Technol. 2001, 43, 19-27. [CrossRef] [PubMed] open in new tab
  68. Rieger, L.; Koch, G.; Kühni, M.; Gujer, W.; Siegrist, H. The EWAG BIO-P module for Activated Sludge Model No. 3. Water Res. 2001, 35, 3887-3903. [CrossRef] open in new tab
  69. Jones, G.L. A mathematical model for bacterial growth and substrate utilisation in the activated-sludge process. In Mathematical Models in Water Pollution Control; open in new tab
  70. James, A., Ed.; John Wiley and Sons: London, UK, 1978; pp. 265-279.
  71. Chambers, B.; Jones, G.L. Optimisation and Uprating of Activated Sludge Plants by Efficient Process Design. Water Sci. Technol. 1988, 20, 121-132. [CrossRef] open in new tab
  72. Murnleitner, E.; Kuba, T.; Van Loosdrecht, M.C.M.; Heijnen, J.J. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal. Biotechnol. Bioeng. 1997, 54, 434-450. [CrossRef] Processes 2019, 7, 311 20 of 21 open in new tab
  73. Van Veldhuizen, H.M.; Van Loosdrecht, M.C.M.; Heijnen, J.J. Modelling biological phosphorus and nitro gen removal in a full scale activated sludge process. Water Res. 1999, 33, 3459-3468. [CrossRef] open in new tab
  74. Szabat, K.; Urban, R. Zastosowanie logiki rozmytej do sterowania napędowymi układami napowietrzania komór tlenowych w oczyszczalniścieków/Application of the fuzzy logic to control the electrical blowers in the sewage treatment plant. Prace Naukowe IMNiPE Politechniki Wrocławskiej 2009, 63, 341-354.
  75. Kalker, T.J.J.; Van Goor, C.P.; Roeleveld, P.; Ruland, M.F. Fuzzy Control of Aeration in an Activated Sludge Wastewater Treatment Plant: Design, Simulation and Evaluation. Water Sci. Technol. 1999, 4, 71-78. [CrossRef] open in new tab
  76. Stare, A.; Vrecko, D.; Hvala, N.; Strmcnik, S. Comparison of control strategies for nitrogen removal in an activated sludge process in terms of operating costs: Simulation study. Water Res. 2007, 41, 2004-2014. [CrossRef] [PubMed] open in new tab
  77. Borowa, A.; Brdyś, M.; Mazur, K. Modeling of wastewater treatment plant for monitoring and control purposes by state-space wavelet networks. IJCCC 2007, 2, 121-131. [CrossRef] open in new tab
  78. Amand, L.; Carlsson, B. Aeration Control with Gain Scheduling in a Full-scale Wastewater Treatment Plant. IFAC Proc. Vol. 2014, 47, 7146-7151. [CrossRef] open in new tab
  79. Regmi, P.; Miller, M.W.; Holgate, B.; Bunce, R.; Park, H.; Chandran, K.; Wett, B.; Murthy, S.; Bott, C.B. Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation. Water Res. 2014, 57, 162-171. [CrossRef] [PubMed] open in new tab
  80. Kaelin, D.; Manser, R.; Rieger, L.; Eugster, J.; Rottermann, K.; Siegrist, H. Extension of ASM3 for two-step nitrification and denitrification and its calibration and validation with batch tests and pilot scale data. Water Res. 2009, 43, 1680-1692. [CrossRef] [PubMed] open in new tab
  81. Zaborowska, E.; Majtacz, J.; Drewnowski, J.; Sobotka, D.; Al-Hazmi, H.; Kowal, P.; Mąkinia, J. Improving the energy balance in wastewater treatment plants by optimization of aeration control and application of new technologies. In Water Supply and Wastewater Disposal; Sobczuk, H., Kowalska, B., Eds.; LUT: Lublin, Poland, 2018; pp. 317-328.
  82. Maktabifard, M.; Zaborowska, E.; Makinia, J. Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production. Rev. Environ. Sci. Biotechnol. 2018, 17, 655-689. [CrossRef] open in new tab
  83. U.S. Municipal Solid Waste Sector Action Plan. 2013. Available online: documents/landfills_cap_usa.pdf. (accessed on 5 May 2019). open in new tab
  84. Piao, W.; Kim, Y.; Kim, H.; Kim, M.; Kim, C. Life cycle assessment and economic efficiency analysis of integrated management of wastewater treatment plants. J. Clean. Prod. 2016, 113, 325-337. [CrossRef] open in new tab
  85. Guerrini, A.; Romano, G.; Leardini, C. Economic of scale and density in the Italian water industry: A stochastic frontier approach. Util. Policy 2018, 52, 103-111. [CrossRef] open in new tab
  86. Daelman, M.R.J.; Van Voorthuizen, E.M.; Van Dongen, L.G.J.M.; Volcke, E.I.P.; van Loosdrecht, M.C.M. Methane and nitrous oxide emissions from municipal wastewater treatment-Results from a long-term study. Water Sci. Technol. 2013, 67, 2350-2355. [CrossRef] [PubMed] open in new tab
  87. Remy, C.; Lesjean, B.; Waschnewski, J. Identifying energy and carbon footprint optimization potentials of a sludge treatment line with life cycle assessment. Water Sci. Technol. 2013, 67, 63-73. [CrossRef] [PubMed] open in new tab
  88. De Haas, D.W.; Pepperell, C.; Foley, J. Perspectives on greenhouse gas emission estimates based on Australian wastewater treatment plant operating data. Water Sci. Technol. 2014, 69, 451-463. [CrossRef] open in new tab
  89. Mamais, D.; Noutsopoulos, C.; Dimopoulou, A.; Stasinakis, A.; Lekkas, T.D. Wastewater treatment process impact on energy savings and greenhouse gas emissions. Water Sci. Technol. 2015, 71, 303-308. [CrossRef] [PubMed] open in new tab
  90. Bao, Z.; Sun, S.; Sun, D. Assessment of greenhouse gas emission from A/O and SBR wastewater treatment plants in Beijing, China. Int. Biodeterior. Biodegrad. 2016, 108, 108-114. [CrossRef] open in new tab
  91. Wang, H.; Yang, Y.; Keller, A.A.; Li, X.; Feng, S.; Dong, Y.; Li, F. Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa. Appl. Energy 2016, 184, 873-881. [CrossRef] open in new tab
  92. Evangelisti, S.; Lettieri, P.; Borello, D.; Clift, R. Life cycle assessment of energy from waste via anaerobic digestion: A UK case study. Waste Manag. 2014, 34, 226-237. [CrossRef] open in new tab
  93. Arashiro, L.T.; Montero, N.; Ferrer, I.; Acién, F.G.; Gómez, C.; Garfí, M. Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Sci. Total Environ. 2018, 622-623, 1118-1130. [CrossRef] open in new tab
  94. Polruang, S.; Sirivithayapakorn, S.; Prateep Na Talang, R. A comparative life cycle assessment of municipal wastewater treatment plants in Thailand under variable power schemes and effluent management programs. J. Clean. Prod. 2018, 172, 635-648. [CrossRef] open in new tab
  95. Herna'ndez-Sancho, F.; Molinos-Senante, M.; Sala-Garrido, R. Energy efficiency in Spanish wastewater treatment plants: A non-radial DEA approach. Sci. Total Environ. 2011, 409, 2693-2699. [CrossRef] [PubMed] open in new tab
  96. Sala-Garrido, R.; Herna´ndez-Sancho, F.; Molinos-Senante, M. Assessing the efficiency of wastewater treatment plants in an uncertain context: A DEA with tolerances approach. Environ. Sci. Policy 2012, 18, 34-44. [CrossRef] open in new tab
  97. Molinos-Senante, M.; Hernández-Sancho, F.; Mocholí-Arce, M.; Sala-Garrido, R. Economic and environmental performance of wastewater treatment plants: Potential reductions in greenhouse gases emissions. Resour. Energy Econ. 2014, 38, 125-140. [CrossRef] open in new tab
  98. Lorenzo-Toja, Y.; Alfonsin, C.; Amores, M.J.; Aldea, X.; Marin, D.; Moreira, M.T.; Feijoo, G. Beyond the conventional life cycle inventory in wastewater treatment plants. Sci. Total Environ. 2016, 553, 71-82. [CrossRef] [PubMed] open in new tab
  99. Hydromantis ESS, Inc. GPS-X Technical Reference; open in new tab
  100. Hydromantis ESS, Inc.: Hamilton, ON, Canada, 2017.
  101. Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308-313. [CrossRef] © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( open in new tab
Sources of funding:
  • Działalność statusowa
Verified by:
Gdańsk University of Technology

seen 63 times

Recommended for you

Meta Tags