CENTRAL-FORCE DECOMPOSITION OF THE TERSOFF POTENTIAL - Publication - Bridge of Knowledge

Search

CENTRAL-FORCE DECOMPOSITION OF THE TERSOFF POTENTIAL

Abstract

Central forces play important role in the analysis of results obtained with particle simulation methods, since they allow evaluating stress fields. In this work we derive expressions for a central-force decompositon of the Tersoff potential, which is often used to describe interatomic interactions in covalently bonded materials. We simplify the obtained expressions and discuss their properties.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 47 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Published in:
TASK Quarterly no. 21, pages 261 - 283,
ISSN: 1428-6394
Language:
English
Publication year:
2017
Bibliographic description:
Tran T., Winczewski S.: CENTRAL-FORCE DECOMPOSITION OF THE TERSOFF POTENTIAL// TASK Quarterly. -Vol. 21., nr. 3 (2017), s.261-283
DOI:
Digital Object Identifier (open in new tab) 10.17466/tq2017/21.3/p
Bibliography: test
  1. Alder B J and Wainwright T E 1959 The Journal of Chemical Physics 31 459 open in new tab
  2. Rapaport D C 1995 The Art of Molecular Dynamics Simulation, Cambridge University Press open in new tab
  3. Leach A R 2001 Molecular Modelling: Principles and Applications, Prentice Hall open in new tab
  4. Frenkel D and Smit B 2002 Understanding Molecular Simulations: From Algorithms to Applications, Academic Press open in new tab
  5. Voter A F 1996 MRS Bulletin, Cambridge University Press, 21 (2) 17 doi: 10.1557/S0883769400046248 open in new tab
  6. Dziedzic J, Winczewski S and Rybicki J 2016 Computational Materials Science 114 (Supplement C) 219 doi: 10.1016/j.commatsci.2015.12.014 open in new tab
  7. Stillinger F H and Weber T A 1985 Phys. Rev. B, American Physical Society, 31 (8) 5262 doi: 10.1103/PhysRevB.31.5262 open in new tab
  8. Daw M S and Baskes M I 1984 Phys. Rev. B, American Physical Society, 29 (12) 6443 doi: 10.1103/PhysRevB.29.6443 open in new tab
  9. Baskes M I 1987 Phys. Rev. Lett., American Physical Society, 59 (23) 2666 doi: 10.1103/PhysRevLett.59.2666 open in new tab
  10. Baskes M I 1992 Phys. Rev. B, American Physical Society, 46 (5) 2727 doi: 10.1103/PhysRevB.46.2727 open in new tab
  11. Lee B-J and Baskes M I 2000 Phys. Rev. B, American Physical Society, 62 (13) 8564 doi: 10.1103/PhysRevB.62.8564 open in new tab
  12. Dongare A M, Neurock M and Zhigilei L V 2009 Phys. Rev. B, American Physical Society, 80 (18) 184106 doi: 10.1103/PhysRevB.80.184106 open in new tab
  13. Lenosky T J, Sadigh B, Alonso E, Bulatov V V, Rubia T D de la, Kim J, Voter A F and Kress J D 2000 Modelling and Simulation in Materials Science and Engineering 8 (6) 825 open in new tab
  14. Brenner D W 1990 Phys. Rev. B, American Physical Society, 42 (15) 9458 doi: 10.1103/PhysRevB.42.9458 open in new tab
  15. Stuart S J, Tutein A B and Harrison J A 2000 The Journal of Chemical Physics 112 (14) 6472 doi: 10.1063/1.481208 open in new tab
  16. Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 Journal of Physics: Condensed Matter 14 (4) 783 open in new tab
  17. Tersoff J 1988 Phys. Rev. B, American Physical Society, 37 (12) 6991 doi: 10.1103/PhysRevB.37.6991 open in new tab
  18. Tersoff J 1989 Phys. Rev. B, American Physical Society, 39 (8) 5566 doi: 10.1103/PhysRevB.39.5566 open in new tab
  19. Erhart P and Albe K 2005 Phys. Rev. B, American Physical Society, 71 (3) 35211 doi: 10.1103/PhysRevB.71.035211 open in new tab
  20. Lindsay L and Broido D A 2010 Phys. Rev. B, American Physical Society, 81 (20) 205441 doi: 10.1103/PhysRevB.81.205441 open in new tab
  21. Agrawal P M, Raff L M and Komanduri R 2005 Phys. Rev. B, American Physical Society, 72 (12) 125206 doi: 10.1103/PhysRevB.72.125206 open in new tab
  22. Smith R 1992 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 67 (1) 335 doi: 10.1016/0168-583X(92)95829-G open in new tab
  23. Sayed M, Jefferson J H, Walker A B and Cullis A G 1995 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 102 (1) 218 doi: 10.1016/0168-583X(95)80144-B open in new tab
  24. Nordlund K, Nord J, Frantz J and Keinonen J 2000 Computational Materials Science 18 (3) 283 doi: 10.1016/S0927-0256(00)00107-5 open in new tab
  25. Moon W H and Hwang H J 2003 Physics Letters A 315 (3) 319 doi: 10.1016/S0375-9601(03)01039-9 open in new tab
  26. Goumri-Said S, Kanoun M B, Merad A E, Merad G and Aourag H 2004 Chemical Physics 302 (1) 135 doi: 10.1016/j.chemphys.2004.03.030 open in new tab
  27. Powell D, Migliorato M A and Cullis A G 2007 Phys. Rev. B, American Physical Society, 75 (11) 115202 doi: 10.1103/PhysRevB.75.115202 open in new tab
  28. Winczewski S, Shaheen M Y and Rybicki J 2018 Carbon 126 (Supplement C) 165 doi: 10.1016/j.carbon.2017.10.002 open in new tab
  29. Powell D 2006 Elasticity, Lattice Dynamics and Parameterisation Techniques for the Tersoff Potential Applied to Elemental and Type III-V Semiconductors, University of Sheffield open in new tab
  30. McIntosh, Douglas F. 2010 Theoretical Chemistry Accounts 125 (3) 177 doi: 10.1007/s00214-009-0575-3 open in new tab
  31. Hardy R J 1982 The Journal of Chemical Physics 76 (1) 622 doi: 10.1063/1.442714 open in new tab
  32. Murdoch A I 1983 Q. J. Mech. Appl. Math. 36 163 open in new tab
  33. Winczewski S, Dziedzic J and Rybicki J 2016 Modelling and Simulation in Materials Science and Engineering 24 (7) 75003 open in new tab
  34. Zhen Y and Chu Ch 2012 Computer Physics Communications 183 (2) 261 doi: 10.1016/j.cpc.2011.09.006 open in new tab
  35. Admal N C and Tadmor E B 2010 Journal of Elasticity, Springer Netherlands, 100 (1-2) 63 doi: 10.1007/s10659-010-9249-6 open in new tab
  36. Admal N C and Tadmor E B 2011 The Journal of Chemical Physics 134 (18) 184106 doi: 10.1063/1.3582905 open in new tab
  37. Yang J Z, Wu X and Li X 2012 The Journal of Chemical Physics 137 (13) 134104 doi: 10.1063/1.4755946 open in new tab
  38. Chen Y 2006 The Journal of Chemical Physics 124 (5) 54113 doi: 10.1063/1.2166387 open in new tab
  39. Fu Y and J-H Song 2014 The Journal of Chemical Physics 141 (5) 54108 doi: 10.1063/1.4891606 open in new tab
  40. Vanegas J M, Torres-Sánchez A and Arroyo M 2014 Journal of Chemical Theory and Computation 10 (2) 691 open in new tab
Verified by:
Gdańsk University of Technology

seen 190 times

Recommended for you

Meta Tags