Communication: Inside the water wheel: Intrinsic differences between hydrated tetraphenylphosphonium and tetraphenylborate ions - Publication - Bridge of Knowledge

Search

Communication: Inside the water wheel: Intrinsic differences between hydrated tetraphenylphosphonium and tetraphenylborate ions

Abstract

Tetraphenylphosphonium tetraphenylborate (TPTB) is a common reference electrolyte in physical chemistry of solutions allowing for a convenient partitioning of thermodynamic properties into single-ion contributions. Here, we compute on the basis of ab initio molecular dynamics simulations the infrared (IR) spectra for hydrated constituent ions of the TPTB assumption. Using spectral decomposition techniques, we extract important information pertaining to the state of the hydration water from the IR spectra. Within their physical radii, the ions manage to capture about a dozen H2 O molecules, several of which penetrate deep into the grooves between the tetrahedrally oriented “sails” of the rotating ions. In accordance with previous IR and Raman experiments, we find a considerable blue shift of the νOH stretching band of liquid water by 240 cm−1 for TB, due to the extensive O–H···π hydrogen bonding, which is much weaker for TP. On the other hand, both ions show a second prominent band in the νOH vibration range, only mildly blue shifted with respect to bulk water and attributable to the general distortion of the hydrogen bond network of the neighboring solvent. Finally, spatially resolved IR spectra allow us to pinpoint the exact location around the solutes, from which different IR resonances of the solvent originate.

Citations

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 0

    Scopus

Cite as

Full text

download paper
downloaded 16 times
Publication version
Accepted or Published Version
License
Copyright (AIP Publishing)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF CHEMICAL PHYSICS no. 149, edition 17, pages 1 - 16,
ISSN: 0021-9606
Language:
English
Publication year:
2018
Bibliographic description:
Leśniewski M., Śmiechowski M.: Communication: Inside the water wheel: Intrinsic differences between hydrated tetraphenylphosphonium and tetraphenylborate ions// JOURNAL OF CHEMICAL PHYSICS. -Vol. 149, iss. 17 (2018), s.1-16
DOI:
Digital Object Identifier (open in new tab) 10.1063/1.5056237
Bibliography: test
  1. P. Hunenberger and M. Reif, Single-Ion Solvation: Experimental and Theoretical Ap- proaches to Elusive Thermodynamic Quantities (The Royal Society of Chemistry, Cam- bridge, 2011). open in new tab
  2. T. T. Duignan, M. D. Baer, G. K. Schenter, and C. J. Mundy, Chem. Sci. 8, 6131 (2017). open in new tab
  3. A. L. Rockwood, ChemPhysChem 16, 1978 (2015). open in new tab
  4. M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen, A. D. Earhart, J. V. Coe, and T. R. Tuttle, J. Phys. Chem. B 102, 7787 (1998). open in new tab
  5. T. Pollard and T. L. Beck, J. Chem. Phys. 140, 224507 (2014). open in new tab
  6. C. Kalidas, G. Hefter, and Y. Marcus, Chem. Rev. 100, 819 (2000). open in new tab
  7. Y. Marcus, Pure Appl. Chem. 58, 1721 (1986). open in new tab
  8. B. G. Cox and A. J. Parker, J. Am. Chem. Soc. 95, 402 (1973). open in new tab
  9. R. Alexander, A. J. Parker, J. H. Sharp, and W. E. Waghorne, J. Am. Chem. Soc. 94, 1148 (1972). open in new tab
  10. Y. Marcus and G. Hefter, Chem. Rev. 104, 3405 (2004). open in new tab
  11. G. Hefter and Y. Marcus, J. Solution Chem. 26, 249 (1997). open in new tab
  12. H. D. B. Jenkins and Y. Marcus, Chem. Rev. 95, 2695 (1995). open in new tab
  13. E. Grunwald, G. Baughman, and G. Kohnstam, J. Am. Chem. Soc. 82, 5801 (1960). open in new tab
  14. Y. Marcus, G. Hefter, and T. Chen, J. Chem. Thermodynamics 32, 639 (2000). open in new tab
  15. Y. Marcus, Ion Properties (Marcel Dekker, Inc., New York, 1997).
  16. Y. Marcus, J. Chem. Soc., Faraday Trans. 83, 339 (1987).
  17. Y. Marcus, J. Chem. Soc., Faraday Trans. 83, 2985 (1987).
  18. M. H. Abraham and Y. Marcus, J. Chem. Soc., Faraday Trans. 82, 3255 (1986). open in new tab
  19. O. Carrier, E. H. G. Backus, N. Shahidzadeh, J. Franz, M. Wagner, Y. Nagata, M. Bonn, and D. Bonn, J. Phys. Chem. Lett. 7, 825 (2016). open in new tab
  20. R. Scheu, B. M. Rankin, Y. Chen, K. C. Jena, D. Ben-Amotz, and S. Roke, Angew. Chem. Int. Ed. 53, 9560 (2014). open in new tab
  21. M. C. R. Symons, Phys. Chem. Chem. Phys. 1, 113 (1999). open in new tab
  22. J. Stangret and E. Kamieńska-Piotrowicz, J. Chem. Soc., Faraday Trans. 93, 3463 (1997). open in new tab
  23. C. Jolicoeur, N. D. The, and A. Cabana, Can. J. Chem. 49, 2008 (1971). open in new tab
  24. J. F. Coetzee and W. R. Sharpe, J. Phys. Chem. 76, 3141 (1971). open in new tab
  25. W. Wachter, R. Buchner, and G. Hefter, J. Phys. Chem. B 110, 5147 (2006). open in new tab
  26. T. T. Duignan, M. D. Baer, and C. J. Mundy, J. Chem. Phys. 148, 222819 (2018). open in new tab
  27. J. Schamberger and R. J. Clarke, Biophys. J. 82, 3081 (2002). open in new tab
  28. R. Schurhammer, E. Engler, and G. Wipff, J. Phys. Chem. B 105, 10700 (2001). open in new tab
  29. R. Schurhammer and G. Wipff, J. Phys. Chem. A 104, 11159 (2000). open in new tab
  30. R. Schurhammer and G. Wipff, New J. Chem. 23, 381 (1999). open in new tab
  31. R. C. Remsing, T. T. Duignan, M. D. Baer, G. K. Schenter, C. J. Mundy, and J. D. Weeks, J. Phys. Chem. B 122, 3519 (2018). open in new tab
  32. T. T. Duignan, M. D. Baer, G. K. Schenter, and C. J. Mundy, J. Chem. Phys. 147, 161716 (2017). open in new tab
  33. D. Marx and J. Hutter, Ab Initio Molecular Dynamics (Cambridge University Press, Cam- bridge, 2009). open in new tab
  34. M.Śmiechowski, J. Phys. Chem. B 122, 3141 (2018). open in new tab
  35. J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele, WIREs Comput. Mol. Sci. 4, 15 (2014). open in new tab
  36. The cp2k Developers Group, cp2k v. 2.3 (2001-2012), http://www.cp2k.org/. open in new tab
  37. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter, Comp. Phys. Commun. 167, 103 (2005). open in new tab
  38. A. D. Becke, Phys. Rev. A 38, 3098 (1988). open in new tab
  39. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). open in new tab
  40. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010). open in new tab
  41. S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996). open in new tab
  42. G. Lippert, J. Hutter, and M. Parrinello, Mol. Phys. 92, 477 (1997). open in new tab
  43. P. Gasparotto, A. A. Hassanali, and M. Ceriotti, J. Chem. Theory Comput. 12, 1953 (2016). open in new tab
  44. R. Jonchiere, A. P. Seitsonen, G. Ferlat, A. M. Saitta, and R. Vuilleumier, J. Chem. Phys. 135, 154503 (2011). open in new tab
  45. G. J. Martyna, M. L. Klein, and M. Tuckerman, J. Chem. Phys. 97, 2635 (1992). open in new tab
  46. N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997). open in new tab
  47. P. L. Silvestrelli and M. Parrinello, Phys. Rev. Lett. 82, 3308 (1999). open in new tab
  48. M. Heyden, J. Sun, S. Funkner, G. Mathias, H. Forbert, M. Havenith, and D. Marx, Proc. open in new tab
  49. Y. Nagata and S. Mukamel, J. Am. Chem. Soc. 132, 6434 (2010). open in new tab
  50. M.Śmiechowski, J. Krakowiak, P. Bruździak, and J. Stangret, Phys. Chem. Chem. Phys. 19, 9270 (2017). open in new tab
  51. M.Śmiechowski, J. Sun, H. Forbert, and D. Marx, Phys. Chem. Chem. Phys. 17, 8323 (2015). open in new tab
  52. M.Śmiechowski, H. Forbert, and D. Marx, J. Chem. Phys. 139, 014506 (2013). open in new tab
  53. C. Jolicoeur, P. R. Philip, G. Perron, P. A. Leduc, and J. E. Desnoyers, Can. J. Chem. 50, 3167 (1972). open in new tab
  54. G. Kalfoglou and L. H. Bowen, J. Phys. Chem. 73, 2728 (1969). open in new tab
  55. J. F. Skinner and R. M. Fuoss, J. Phys. Chem. 68, 1882 (1964).
  56. B. Berglund, J. Lindgren, and J. Tegenfeldt, J. Mol. Struct. 43, 169 (1978). open in new tab
  57. K. P. Gierszal, J. G. Davis, M. D. Hands, D. S. Wilcox, L. V. Slipchenko, and D. Ben- Amotz, J. Phys. Chem. Lett. 2, 2930 (2011). open in new tab
  58. P. N. Perera, K. R. Fega, C. Lawrence, E. J. Sundstrom, J. Tomlinson-Phillips, and D. Ben-Amotz, Proc. Natl. Acad. Sci. U. S. A. 106, 12230 (2009). open in new tab
  59. T. Ohto, H. Tada, and Y. Nagata, Phys. Chem. Chem. Phys. 20, 12979 (2018). open in new tab
  60. R. Kumar, J. R. Schmidt, and J. L. Skinner, J. Chem. Phys. 126, 204107 (2007). open in new tab
  61. A. Choudhary and A. Chandra, Phys. Chem. Chem. Phys. 18, 6132 (2016). open in new tab
  62. M. Allesch, E. Schwegler, and G. Galli, J. Phys. Chem. B 111, 1081 (2007). open in new tab
  63. B. Berglund, J. Lindgren, and J. Tegenfeldt, J. Mol. Struct. 43, 179 (1978). open in new tab
  64. M.Śmiechowski, Mol. Phys. 114, 1831 (2016). open in new tab
  65. E. Anim-Danso, Y. Zhang, and A. Dhinojwala, J. Phys. Chem. C 120, 3741 (2016). open in new tab
  66. M. D. Ward, Struct. Bond. 132, 1 (2009).
  67. P. Ball and J. E. Hallsworth, Phys. Chem. Chem. Phys. 17, 8297 (2015). open in new tab
  68. R. L. Baldwin, Proc. Natl. Acad. Sci. U. S. A. 111, 13052 (2014). open in new tab
  69. P. Ball, Chem. Rev. 108, 74 (2008). open in new tab
  70. L. R. Pratt, Annu. Rev. Phys. Chem. 53, 409 (2002). open in new tab
  71. V. V. Yaminsky and E. A. Vogler, Curr. Opin. Colloid Interface Sci. 6, 342 (2001). open in new tab
  72. J. L. Finney and A. K. Soper, Chem. Soc. Rev. 23, 1 (1994). open in new tab
  73. J. Grdadolnik, F. Merzel, and F. Avbelj, Proc. Natl. Acad. Sci. U. S. A. 114, 322 (2017). open in new tab
  74. M. Ahmed, A. K. Singh, and J. A. Mondal, Phys. Chem. Chem. Phys. 18, 2767 (2016). open in new tab
  75. J. G. Davis, K. P. Gierszal, P. Wang, and D. Ben-Amotz, Nature 491, 582 (2012). open in new tab
  76. P. A. Pieniazek and J. Stangret, Vib. Spectrosc. 39, 81 (2005). open in new tab
  77. J. Stangret and T. Gampe, J. Phys. Chem. B 103, 3778 (1999). open in new tab
  78. M. Heyden, J. Sun, H. Forbert, G. Mathias, M. Havenith, and D. Marx, J. Phys. Chem. open in new tab
Verified by:
Gdańsk University of Technology

seen 113 times

Recommended for you

Meta Tags