Effect of Chitosan Deacetylation on Its Affinity to Type III Collagen: A Molecular Dynamics Study - Publication - Bridge of Knowledge

Search

Effect of Chitosan Deacetylation on Its Affinity to Type III Collagen: A Molecular Dynamics Study

Abstract

The ability to form strong intermolecular interactions by linear glucosamine polysaccharides with collagen is strictly related to their nonlinear dynamic behavior and hence bio-lubricating features. Type III collagen plays a crucial role in tissue regeneration, and its presence in the articular cartilage affects its bio-technical features. In this study, the molecular dynamics methodology was applied to evaluate the effect of deacetylation degree on the chitosan affinity to type III collagen. The computational procedure employed docking and geometry optimizations of different chitosan structures characterized by randomly distributed deacetylated groups. The eight different degrees of deacetylation from 12.5% to 100% were taken into account. We found an increasing linear trend (R2 = 0.97) between deacetylation degree and the collagen–chitosan interaction energy. This can be explained by replacing weak hydrophobic contacts with more stable hydrogen bonds involving amino groups in N-deacetylated chitosan moieties. In this study, the properties of chitosan were compared with hyaluronic acid, which is a natural component of synovial fluid and cartilage. As we found, when the degree of deacetylation of chitosan was greater than 0.4, it exhibited a higher affinity for collagen than in the case of hyaluronic acid. 

Citations

  • 7

    CrossRef

  • 0

    Web of Science

  • 8

    Scopus

Cite as

Full text

download paper
downloaded 42 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Magazine publication
Type:
Magazine publication
Published in:
Materials no. 15, edition 2,
ISSN: 1996-1944
Publication year:
2022
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma15020463
Bibliography: test
  1. Shen, Y.; Levin, A.; Kamada, A.; Toprakcioglu, Z.; Rodriguez-Garcia, M.; Xu, Y.; Knowles, T.P.J. From Protein Building Blocks to Functional Materials. ACS Nano 2021, 15, 5819-5837. [CrossRef] [PubMed] open in new tab
  2. Madhavi, W.A.M.; Weerasinghe, S.; Fullerton, G.D.; Momot, K.I. Structure and Dynamics of Collagen Hydration Water from Molecular Dynamics Simulations: Implications of Temperature and Pressure. J. Phys. Chem. B 2019, 123, 4901-4914. [CrossRef] Materials 2022, 15, 463 12 of 15 open in new tab
  3. Li, L.; Yu, F.; Zheng, L.; Wang, R.; Yan, W.; Wang, Z.; Xu, J.; Wu, J.; Shi, D.; Zhu, L.; et al. Natural hydrogels for cartilage regeneration: Modification, preparation and application. J. Orthop. Transl. 2019, 17, 26-41. [CrossRef] open in new tab
  4. Glowacki, J.; Mizuno, S. Collagen scaffolds for tissue engineering. Biopolymers 2008, 89, 338-344. [CrossRef] [PubMed] open in new tab
  5. Chen, F.M.; Liu, X. Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci. 2016, 53, 86-168. [CrossRef] [PubMed] open in new tab
  6. Lim, Y.S.; Ok, Y.J.; Hwang, S.Y.; Kwak, J.Y.; Yoon, S. Marine collagen as a promising biomaterial for biomedical applications. Mar. Drugs 2019, 17, 467. [CrossRef] open in new tab
  7. Chocholata, P.; Kulda, V.; Babuska, V. Fabrication of scaffolds for bone-tissue regeneration. Materials 2019, 12, 568. [CrossRef] open in new tab
  8. Sionkowska, A.; Adamiak, K.; Musial, K.; Gadomska, M. Collagen based materials in cosmetic applications: A review. Materials 2020, 13, 4217. [CrossRef] open in new tab
  9. Kaczmarek, B.; Lewandowska, K.; Sionkowska, A. Modification of collagen properties with ferulic acid. Materials 2020, 13, 3419. [CrossRef] open in new tab
  10. Sionkowska, A. Collagen blended with natural polymers: Recent advances and trends. Prog. Polym. Sci. 2021, 122, 101452. [CrossRef] open in new tab
  11. Strauss, G.; Gibson, S.M. Plant phenolics as cross-linkers of gelatin gels and gelatin-based coacervates for use as food ingredients. Food Hydrocoll. 2004, 18, 81-89. [CrossRef] open in new tab
  12. Wu, L.; Shao, H.; Fang, Z.; Zhao, Y.; Cao, C.Y.; Li, Q. Mechanism and Effects of Polyphenol Derivatives for Modifying Collagen. ACS Biomater. Sci. Eng. 2019, 5, 4272-4284. [CrossRef] open in new tab
  13. Madhan, B.; Subramanian, V.; Rao, J.R.; Nair, B.U.; Ramasami, T. Stabilization of collagen using plant polyphenol: Role of catechin. Int. J. Biol. Macromol. 2005, 37, 47-53. [CrossRef] open in new tab
  14. Bhattarai, G.; Poudel, S.; Kim, M.; Sim, H.; So, H.; Kook, S.; Lee, J. Polyphenols and recombinant protein activated collagen scaffold enhance angiogenesis and bone regeneration in rat critical-sized mandible defect. Cytotherapy 2019, 21, e8-e9. [CrossRef] open in new tab
  15. Walczak, M.; Michalska-Sionkowska, M.; Kaczmarek, B.; Sionkowska, A. Surface and antibacterial properties of thin films based on collagen and thymol. Mater. Today Commun. 2020, 22, 100949. [CrossRef] open in new tab
  16. Li, H.; Qi, Z.; Zheng, S.; Chang, Y.; Kong, W.; Fu, C.; Yu, Z.; Yang, X.; Pan, S. The Application of Hyaluronic Acid-Based Hydrogels in Bone and Cartilage Tissue Engineering. Adv. Mater. Sci. Eng. 2019, 2019, 3027303. [CrossRef] open in new tab
  17. Zhang, Y.; Cao, Y.; Zhao, H.; Zhang, L.; Ni, T.; Liu, Y.; An, Z.; Liu, M.; Pei, R. An injectable BMSC-laden enzyme-catalyzed crosslinking collagen-hyaluronic acid hydrogel for cartilage repair and regeneration. J. Mater. Chem. B 2020, 8, 4237-4244. [CrossRef] [PubMed] open in new tab
  18. Saha, N.; Saarai, A.; Roy, N.; Kitano, T.; Saha, P. Polymeric Biomaterial Based Hydrogels for Biomedical Applications. J. Biomater. Nanobiotechnol. 2011, 02, 85-90. [CrossRef] open in new tab
  19. Kaczmarek-Szczepańska, B.; Mazur, O.; Michalska-Sionkowska, M.; Łukowicz, K.; Osyczka, A.M. The preparation and characteri- zation of chitosan-based hydrogels cross-linked by glyoxal. Materials 2021, 14, 2449. [CrossRef] open in new tab
  20. Lewandowska, K.; Sionkowska, A.; Grabska, S.; Kaczmarek, B.; Michalska, M. The miscibility of collagen/hyaluronic acid/chitosan blends investigated in dilute solutions and solids. J. Mol. Liq. 2016, 220, 726-730. [CrossRef] open in new tab
  21. Zakhem, E.; Bitar, K. Development of Chitosan Scaffolds with Enhanced Mechanical Properties for Intestinal Tissue Engineering Applications. J. Funct. Biomater. 2015, 6, 999-1011. [CrossRef] [PubMed] open in new tab
  22. Martínez, A.; Blanco, M.D.; Davidenko, N.; Cameron, R.E. Tailoring chitosan/collagen scaffolds for tissue engineering: Effect of composition and different crosslinking agents on scaffold properties. Carbohydr. Polym. 2015, 132, 606-619. [CrossRef] [PubMed] open in new tab
  23. Han, C.M.; Zhang, L.P.; Sun, J.Z.; Shi, H.F.; Zhou, J.; Gao, C.Y. Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering. J. Zhejiang Univ. Sci. B 2010, 11, 524-530. [CrossRef] [PubMed] open in new tab
  24. Sionkowska, A.; Walczak, M.; Michalska-Sionkowska, M. Preparation and characterization of collagen/chitosan composites with silver nanoparticles. Polym. Compos. 2020, 41, 951-957. [CrossRef] open in new tab
  25. Sionkowska, A.; Tuwalska, A. Preparation and characterization of new materials based on silk fibroin, chitosan and nanohydrox- yapatite. Int. J. Polym. Anal. Charact. 2020, 25, 315-333. [CrossRef] open in new tab
  26. Grabska-Zielińska, S.; Sionkowska, A.; Coelho, C.C.; Monteiro, F.J. Silk fibroin/collagen/chitosan scaffolds cross-linked by a glyoxal solution as biomaterials toward bone tissue regeneration. Materials 2020, 13, 3433. [CrossRef] open in new tab
  27. Grabska-Zielińska, S.; Sionkowska, A.; Reczyńska, K.; Pamuła, E. Physico-chemical characterization and biological tests of collagen/silk fibroin/chitosan scaffolds cross-linked by dialdehyde starch. Polymers 2020, 12, 372. [CrossRef] open in new tab
  28. Sionkowska, A.; Kaczmarek, B. Preparation and characterization of composites based on the blends of collagen, chitosan and hyaluronic acid with nano-hydroxyapatite. Int. J. Biol. Macromol. 2017, 102, 658-666. [CrossRef] [PubMed] open in new tab
  29. Gao, Y.; Liu, Q.; Kong, W.; Wang, J.; He, L.; Guo, L.; Lin, H.; Fan, H.; Fan, Y.; Zhang, X. Activated hyaluronic acid/collagen composite hydrogel with tunable physical properties and improved biological properties. Int. J. Biol. Macromol. 2020, 164, 2186-2196. [CrossRef] open in new tab
  30. Rodríguez-Vázquez, M.; Vega-Ruiz, B.; Ramos-Zúñiga, R.; Saldaña-Koppel, D.A.; Quiñones-Olvera, L.F. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine. BioMed Res. Int. 2015, 2015, 821279. [CrossRef] open in new tab
  31. Schwab, A.; Helary, C.; Richards, G.; Alini, M.; Eglin, D.; D'Este, M. Tissue mimetic hyaluronan bioink containing collagen fibers with controlled orientation modulating cell morphology and alignment. Mater. Today Bio 2020, 7, 100058. [CrossRef] open in new tab
  32. Li, Y.; Liu, Y.; Li, R.; Bai, H.; Zhu, Z.; Zhu, L.; Zhu, C.; Che, Z.; Liu, H.; Wang, J.; et al. Collagen-based biomaterials for bone tissue engineering. Mater. Des. 2021, 210, 110049. [CrossRef] open in new tab
  33. Dong, C.; Lv, Y. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers 2016, 8, 42. [CrossRef] open in new tab
  34. Gupta, R.C.; Lall, R.; Srivastava, A.; Sinha, A. Hyaluronic acid: Molecular mechanisms and therapeutic trajectory. Front. Vet. Sci. 2019, 6, 192. [CrossRef] open in new tab
  35. Litwiniuk, M.; Krejner, A. Hyaluronic Acid in Inflammation and Tissue Regeneration. Wounds 2016, 28, 78-88. [PubMed] open in new tab
  36. Dovedytis, M.; Liu, Z.J.; Bartlett, S. Hyaluronic acid and its biomedical applications: A review. Eng. Regen. 2020, 1, 102-113. [CrossRef] open in new tab
  37. Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Dermato-endocrinology 2012, 4, 253-258. [CrossRef] [PubMed] open in new tab
  38. Baumann, L. Skin ageing and its treatment. J. Pathol. 2007, 211, 241-251. [CrossRef] [PubMed] open in new tab
  39. Šoltés, L.; Mendichi, R.; Kogan, G.; Schiller, J.; Stankovská, M.; Arnhold, J. Degradative action of reactive oxygen species on hyaluronan. Biomacromolecules 2006, 7, 659-668. [CrossRef] open in new tab
  40. Domalik-Pyzik, P.; Chłopek, J.; Pielichowska, K. Chitosan-Based Hydrogels: Preparation, Properties, and Applications. In Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series; Mondal, M., Ed.; Springer: Cham, Switzerland, 2019; pp. 1665-1693. open in new tab
  41. Mathaba, M.; Daramola, M.O. Effect of chitosan's degree of deacetylation on the performance of pes membrane infused with chitosan during amd treatment. Membranes 2020, 10, 52. [CrossRef] open in new tab
  42. Hsu, S.H.; Whu, S.W.; Tsai, C.L.; Wu, Y.H.; Chen, H.W.; Hsieh, K.H. Chitosan as scaffold materials: Effects of molecular weight and degree of deacetylation. J. Polym. Res. 2004, 11, 141-147. [CrossRef] open in new tab
  43. Seda Tıglı, R.; Karakeçili, A.; Gümüşderelioglu, M. In vitro characterization of chitosan scaffolds: Influence of composition and deacetylation degree. J. Mater. Sci. Mater. Med. 2007, 18, 1665-1674. [CrossRef] open in new tab
  44. Lestari, W.; Yusry, W.N.A.W.; Haris, M.S.; Jaswir, I.; Idrus, E. A glimpse on the function of chitosan as a dental hemostatic agent. Jpn. Dent. Sci. Rev. 2020, 56, 147-154. [CrossRef] open in new tab
  45. Wu, X.; Black, L.; Santacana-Laffitte, G.; Patrick, C.W. Preparation and assessment of glutaraldehyde-crosslinked collagen-chitosan hydrogels for adipose tissue engineering. J. Biomed. Mater. Res.-Part A 2007, 81, 59-65. [CrossRef] [PubMed] open in new tab
  46. Yan, L.P.; Wang, Y.J.; Ren, L.; Wu, G.; Caridade, S.G.; Fan, J.B.; Wang, L.Y.; Ji, P.H.; Oliveira, J.M.; Oliveira, J.T.; et al. Genipin-cross- linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J. Biomed. Mater. Res.-Part A 2010, 95A, 465-475. [CrossRef] open in new tab
  47. Chattopadhyay, S.; Raines, R.T. Review collagen-based biomaterials for wound healing. Biopolymers 2014, 101, 821-833. [CrossRef] [PubMed] open in new tab
  48. Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in wound healing. Bioengineering 2021, 8, 63. [CrossRef] [PubMed] open in new tab
  49. Jirofti, N.; Golandi, M.; Movaffagh, J.; Ahmadi, F.S.; Kalalinia, F. Improvement of the Wound-Healing Process by Curcumin- Loaded Chitosan/Collagen Blend Electrospun Nanofibers: In vitro and in vivo Studies. ACS Biomater. Sci. Eng. 2021, 7, 3886-3897. [CrossRef] open in new tab
  50. Susanto, A.; Susanah, S.; Priosoeryanto, B.P.; Satari, M.H.; Komara, I. The effect of the chitosan-collagen membrane on wound healing process in rat mandibular defect. J. Indian Soc. Periodontol. 2019, 23, 113-118. [CrossRef] open in new tab
  51. Zhang, M.X.; Zhao, W.Y.; Fang, Q.Q.; Wang, X.F.; Chen, C.Y.; Shi, B.H.; Zheng, B.; Wang, S.J.; Tan, W.Q.; Wu, L.H. Effects of chitosan- collagen dressing on wound healing in vitro and in vivo assays. J. Appl. Biomater. Funct. Mater. 2021, 19, 2280800021989698. [CrossRef] open in new tab
  52. Sadeghi-Avalshahr, A.R.; Nokhasteh, S.; Molavi, A.M.; Mohammad-Pour, N.; Sadeghi, M. Tailored PCL scaffolds as skin substitutes using sacrificial PVP fibers and collagen/chitosan blends. Int. J. Mol. Sci. 2020, 21, 2311. [CrossRef] open in new tab
  53. Sharma, S.; Batra, S. Recent advances of chitosan composites in artificial skin: The next era for potential biomedical application. Mater. Biomed. Eng. Nanobiomater. Tissue Eng. 2019, 97-119. [CrossRef] open in new tab
  54. Fatemi, M.J.; Garahgheshlagh, S.N.; Ghadimi, T.; Jamili, S.; Nourani, M.R.; Sharifi, A.M.; Saberi, M.; Amini, N.; Sarmadi, V.H.; Yazdi-Amirkhiz, S.Y. Investigating the Impact of Collagen-Chitosan Derived from Scomberomorus Guttatus and Shrimp Skin on Second-Degree Burn in Rats Model. Regen. Ther. 2021, 18, 12-20. [CrossRef] [PubMed] open in new tab
  55. Mitura, S.; Sionkowska, A.; Jaiswal, A. Biopolymers for hydrogels in cosmetics: Review. J. Mater. Sci. Mater. Med. 2020, 31, 50. [CrossRef] [PubMed] open in new tab
  56. Li, H.; Hu, C.; Yu, H.; Chen, C. Chitosan composite scaffolds for articular cartilage defect repair: A review. RSC Adv. 2018, 8, 3736-3749. [CrossRef] open in new tab
  57. Cui, A.; Li, H.; Wang, D.; Zhong, J.; Chen, Y.; Lu, H. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine 2020, 29-30, 100587. [CrossRef] [PubMed] open in new tab
  58. Hamood, R.; Tirosh, M.; Fallach, N.; Chodick, G.; Eisenberg, E.; Lubovsky, O. Prevalence and incidence of osteoarthritis: A population-based retrospective cohort study. J. Clin. Med. 2021, 10, 4282. [CrossRef] open in new tab
  59. Gadomski, A.; Kruszewska, N.; Bełdowski, P. Temperature dependent volume expansion of microgel in nonequilibria. Eur. Phys. J. B 2018, 91, 237. [CrossRef] open in new tab
  60. Gadomski, A.; Bełdowski, P.; Augé, W.K., II; Hładyszowski, J.; Pawlak, Z.; Urbaniak, W. Toward a governing mechanism of nanoscale articular cartilage (physiologic) lubrication: Smoluchowski-type dynamics in amphiphile proton channels. Acta Phys. Pol. B 2013, 44, 1801-1820. [CrossRef] open in new tab
  61. Dėdinaitė, A.; Wieland, D.C.F.; Bełdowski, P.; Claesson, P.M. Biolubrication synergy: Hyaluronan-Phospholipid interactions at interfaces. Adv. Colloid Interface Sci. 2019, 274, 102050. [CrossRef] open in new tab
  62. Bier, M. Processive motor protein as an overdamped brownian stepper. Phys. Rev. Lett. 2003, 91, 148104. [CrossRef] open in new tab
  63. Beldowski, P.; Mazurkiewicz, A.; Topoliński, T.; Małek, T. Hydrogen and water bonding between glycosaminoglycans and phospholipids in the synovial fluid: Molecular dynamics study. Materials 2019, 12, 2060. [CrossRef] open in new tab
  64. Bełdowski, P.; Przybyłek, M.; Raczyński, P.; Dedinaite, A.; Górny, K.; Wieland, F.; Dendzik, Z.; Sionkowska, A.; Claesson, P.M. Albumin-hyaluronan interactions: Influence of ionic composition probed by molecular dynamics. Int. J. Mol. Sci. 2021, 22, 12360. [CrossRef] open in new tab
  65. Eyre, D.R. The collagens of articular cartilage. Semin. Arthritis Rheum. 1991, 21, 2-11. [CrossRef] open in new tab
  66. Kannus, P. Structure of the tendon connective tissue. Scand. J. Med. Sci. Sport. 2000, 10, 312-320. [CrossRef] [PubMed] open in new tab
  67. Risteli, L.; Koivula, M.K.; Risteli, J. Procollagen assays in cancer. Adv. Clin. Chem. 2014, 66, 79-100. [PubMed] open in new tab
  68. Aigner, T.; Betling, W.; Stöss, H.; Weseloh, G.; Von Der Mark, K. Independent expression of fibril-forming collagens I, II, and III in chondrocytes of human osteoarthritic cartilage. J. Clin. Investig. 1993, 91, 829-837. [CrossRef] open in new tab
  69. Hosseininia, S.; Weis, M.A.; Rai, J.; Kim, L.; Funk, S.; Dahlberg, L.E.; Eyre, D.R. Evidence for enhanced collagen type III deposition focally in the territorial matrix of osteoarthritic hip articular cartilage. Osteoarthr. Cartil. 2016, 24, 1029-1035. [CrossRef] open in new tab
  70. Wang, C.; Brisson, B.K.; Terajima, M.; Li, Q.; Hoxha, K.; Han, B.; Goldberg, A.M.; Sherry Liu, X.; Marcolongo, M.S.; Enomoto- Iwamoto, M.; et al. Type III collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus. Matrix Biol. 2020, 85-86, 47-67. [CrossRef] [PubMed] open in new tab
  71. Wang, B.; Liu, W.; Xing, D.; Li, R.; Lv, C.; Li, Y.; Yan, X.; Ke, Y.; Xu, Y.; Du, Y.; et al. Injectable nanohydroxyapatite-chitosan-gelatin micro-scaffolds induce regeneration of knee subchondral bone lesions. Sci. Rep. 2017, 7, 16709. [CrossRef] open in new tab
  72. Rieger, R.; Boulocher, C.; Kaderli, S.; Hoc, T. Chitosan in viscosupplementation: In vivo effect on rabbit subchondral bone. BMC Musculoskelet. Disord. 2017, 18, 350. [CrossRef] open in new tab
  73. Mou, D.; Yu, Q.; Zhang, J.; Zhou, J.; Li, X.; Zhuang, W.; Yang, X. Intra-articular Injection of Chitosan-Based Supramolecular Hydrogel for Osteoarthritis Treatment. Tissue Eng. Regen. Med. 2021, 18, 113-125. [CrossRef] open in new tab
  74. Patchornik, S.; Ram, E.; Ben Shalom, N.; Nevo, Z.; Robinson, D. Chitosan-Hyaluronate Hybrid Gel Intraarticular Injection Delays Osteoarthritis Progression and Reduces Pain in a Rat Meniscectomy Model as Compared to Saline and Hyaluronate Treatment. Adv. Orthop. 2012, 2012, 979152. [CrossRef] open in new tab
  75. Kramer, R.Z.; Bella, J.; Mayville, P.; Brodsky, B.; Berman, H.M. Sequence dependent conformational variations of collagen triple-helical structure. Nat. Struct. Biol. 1999, 6, 454-457. [PubMed]
  76. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455-461. [CrossRef] open in new tab
  77. Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; et al. A Point-Charge Force Field for Molecular Mechanics Simulations of Proteins Based on Condensed-Phase Quantum Mechanical Calculations. J. Comput. Chem. 2003, 24, 1999-2012. [CrossRef] [PubMed] open in new tab
  78. Kirschner, K.N.; Yongye, A.B.; Tschampel, S.M.; González-Outeiriño, J.; Daniels, C.R.; Foley, B.L.; Woods, R.J. GLYCAM06: A generalizable biomolecular force field. carbohydrates. J. Comput. Chem. 2008, 29, 622-655. [CrossRef] [PubMed] open in new tab
  79. Krieger, E.; Vriend, G. YASARA View-Molecular graphics for all devices-From smartphones to workstations. Bioinformatics 2014, 30, 2981-2982. [CrossRef] open in new tab
  80. Krieger, E.; Koraimann, G.; Vriend, G. Increasing the precision of comparative models with YASARA NOVA-A self- parameterizing force field. Proteins Struct. Funct. Genet. 2002, 47, 393-402. [CrossRef] open in new tab
  81. Krieger, E.; Dunbrack, R.L.; Hooft, R.W.W.; Krieger, B. Assignment of protonation states in proteins and ligands: Combining pK a prediction with hydrogen bonding network optimization. Methods Mol. Biol. 2012, 819, 405-421. open in new tab
  82. Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 2001, 105, 9954-9960. [CrossRef] open in new tab
  83. Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577-8593. [CrossRef] open in new tab
  84. Krieger, E.; Vriend, G. New ways to boost molecular dynamics simulations. J. Comput. Chem. 2015, 36, 996-1007. [CrossRef] [PubMed] open in new tab
  85. Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929-958. [CrossRef] [PubMed] open in new tab
  86. Udhayakumar, S.; Shankar, K.G.; Sowndarya, S.; Venkatesh, S.; Muralidharan, C.; Rose, C. L-Arginine intercedes bio-crosslinking of a collagen-chitosan 3D-hybrid scaffold for tissue engineering and regeneration: In silico, in vitro, and in vivo studies. RSC Adv. 2017, 7, 25070-25088. [CrossRef] open in new tab
  87. In't Veld, P.J.; Stevens, M.J. Simulation of the mechanical strength of a single collagen molecule. Biophys. J. 2008, 95, 33-39. [CrossRef] open in new tab
  88. Bella, J. Collagen structure: New tricks from a very old dog. Biochem. J. 2016, 473, 1001-1025. [CrossRef] open in new tab
  89. Ye, Y.; Dan, W.; Zeng, R.; Lin, H.; Dan, N.; Guan, L.; Mi, Z. Miscibility studies on the blends of collagen/chitosan by dilute solution viscometry. Eur. Polym. J. 2007, 43, 2066-2071. [CrossRef] open in new tab
  90. Tishchenko, S.; Kostareva, O.; Gabdulkhakov, A.; Mikhaylina, A.; Nikonova, E.; Nevskaya, N.; Sarskikh, A.; Piendl, W.; Garber, M.; Nikonov, S. Protein-RNA affinity of ribosomal protein L1 mutants does not correlate with the number of intermolecular interactions. Acta Crystallogr. Sect. D Biol. Crystallogr. 2015, 71, 376-386. [CrossRef] [PubMed] open in new tab
  91. Orgel, J.P.R.O.; Miller, A.; Irving, T.C.; Fischetti, R.F.; Hammersley, A.P.; Wess, T.J. The in situ supermolecular structure of type I collagen. Structure 2001, 9, 1061-1069. [CrossRef] open in new tab
  92. Bella, J. A new method for describing the helical conformation of collagen: Dependence of the triple helical twist on amino acid sequence. J. Struct. Biol. 2010, 170, 377-391. [CrossRef] [PubMed] open in new tab
  93. Jenkins, C.L.; Bretscher, L.E.; Guzei, I.A.; Raines, R.T. Effect of 3-hydroxyproline residues on collagen stability. J. Am. Chem. Soc. 2003, 125, 6422-6427. [CrossRef] [PubMed] open in new tab
  94. Sionkowska, A.; Wisniewski, M.; Skopinska, J.; Kennedy, C.J.; Wess, T.J. Molecular interactions in collagen and chitosan blends. Biomaterials 2004, 25, 795-801. [CrossRef] open in new tab
  95. Sannan, T.; Kurita, K.; Iwakura, Y. Studies on chitin, 2. Effect of deacetylation on solubility. Die Makromol. Chem. 1976, 177, 3589-3600. [CrossRef] open in new tab
  96. Staroszczyk, H.; Sztuka, K.; Wolska, J.; Wojtasz-Pająk, A.; Kołodziejska, I. Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2014, 117, 707-712. [CrossRef] open in new tab
Verified by:
No verification

seen 172 times

Recommended for you

Meta Tags