Expedited optimization of antenna input characteristics with adaptive Broyden updates - Publication - Bridge of Knowledge

Search

Expedited optimization of antenna input characteristics with adaptive Broyden updates

Abstract

Simulation-driven adjustment of geometry and/or material parameters is a necessary step in the design of contemporary antenna structures. Due to their topological complexity, other means, such as supervised parameter sweeping, does not usually lead to satisfactory results. On the other hand, rigorous numerical optimization is computationally expensive due to a high cost of underlying full-wave electromagnetic (EM) analyses, otherwise required to assess antenna performance in a reliable manner. Design closure normally requires a local search, often carried out by means of gradient-based procedures. In this work, accelerated trust-region gradient-search algorithm is proposed for expedited optimization of antenna structures. In our approach, finite differentiation conventionally used to estimate the antenna response Jacobian is replaced, for selected variables, by a rank-one Broyden updating formula. The selection of variables is governed by the alignment between the direction of the recent design relocation and the coordinate system axes. Operation and performance of the algorithm is demonstrated using a set of benchmark wideband antennas. Comprehensive numerical validation indicates significant computational savings of up to 70 percent that can be achieved without compromising the design quality in a significant manner.

Citations

  • 2 9

    CrossRef

  • 0

    Web of Science

  • 2 6

    Scopus

Cite as

Full text

download paper
downloaded 46 times
Publication version
Accepted or Published Version
License
Copyright (Emerald Publishing Limited)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
ENGINEERING COMPUTATIONS no. 37, pages 851 - 862,
ISSN: 0264-4401
Language:
English
Publication year:
2020
Bibliographic description:
Kozieł S., Pietrenko-Dąbrowska A.: Expedited optimization of antenna input characteristics with adaptive Broyden updates// ENGINEERING COMPUTATIONS -Vol. 37,iss. 3 (2020), s.851-862
DOI:
Digital Object Identifier (open in new tab) 10.1108/ec-01-2019-0023
Bibliography: test
  1. Al-Azza, A.A., Al-Jodah, A.A., Harackiewicz, F.J. (2016), "Spider monkey optimization: a novel technique for antenna optimization", IEEE Ant. Wireless Prop. Lett., Vol. 15, pp. 1016-1019. open in new tab
  2. Alsath, M.G.N., Kanagasabai, M. (2015), "Compact UWB monopole antenna for automotive communications", IEEE Trans. Ant. Prop., Vol. 63 No. 9, pp. 4204-4208, 2015. open in new tab
  3. Balanis, C.A. (Ed.). (2008), Modern Antenna Handbook, Wiley-Interscience. open in new tab
  4. Bekasiewicz, A., Koziel, S. (2016), "Cost-efficient design optimization of compact patch antennas with improved bandwidth", IEEE Ant. Wireless Prop. Lett., Vol. 15, pp. 270- 273. open in new tab
  5. Berguin, S.H., Rancourt, D., Mavris, D.N. (2015), "Method to facilitate high-dimensional space exploration using computationally expensive analyses", AIAA Journal, Vol. 53 No. 12, pp. 3752-3765. open in new tab
  6. Chamaani, S., Mirtaheri, S.A., Abrishamian, M.S. (2011), "Improvement of time and frequency domain performance of antipodal Vivaldi antenna using multi-objective particle swarm optimization", IEEE Trans. on Ant. Prop., Vol. 59, pp. 1738-1742. open in new tab
  7. Chiu, Y.H., Chen, Y.S. (2015), "Multi-objective optimization of UWB antennas in impedance matching, gain, and fidelity factor", IEEE Int. Symp. Ant. Prop., Vancouver, BC, pp. 1940-1941. open in new tab
  8. Conn, A., Scheinberg, K., Vincente, L.N. (2009), Introduction to Derivative-Free Optimization, MPS-SIAM Series on Optimization, SIAM. open in new tab
  9. Elliott, R.C. (2003), Antenna Theory and Design, Revised ed., Wiley. open in new tab
  10. Ghassemi, M., Bakr, M., Sangary, N. (2013), "Antenna design exploiting adjoint sensitivity-based geometry evolution", IET Micro. Ant. Prop., Vol. 7 No. 4, pp. 268-276. open in new tab
  11. Goudos, S. K., Siakavara, K., Samaras, T., Vafiadis, E.E., Sahalos, J.N. (2011), "Self- adaptive differential evolution applied to real-valued antenna and microwave design problems", IEEE Trans. Ant. Prop., Vol. 59 No. 4, pp. 1286-1298. open in new tab
  12. Haq, M.A., Koziel, S., Cheng, Q.S. (2017), "EM-driven size reduction of UWB antennas with ground plane modifications", Int. Applied Comp. Electromagnetics Society (ACES China) Symposium, China, pp. 1-2.
  13. Hansen, R.C. (2009), Phased Arrays Antennas, 2nd ed., Wiley. open in new tab
  14. Iqbal, A., Saraereh, O.A., Ahmad, A.W., Bashir, S. (2018), "Mutual coupling reduction using F-shaped stubs in UWB-MIMO antennas", IEEE Access., Vol. 6, pp. 2755-2759. open in new tab
  15. Jacobs, J.P. (2016), "Characterization by Gaussian processes of finite substrate size effects on gain patterns of microstrip antennas", IET Micro. Ant. Prop., Vol. 10 No. 11, pp. 1189-1195. open in new tab
  16. Koziel, S. (2015), "Fast simulation-driven antenna design using response-feature surrogates", Int. J. RF Micro. CAE., Vol. 25 No. 5, pp. 394-402. open in new tab
  17. Koziel, S., Bandler, J.W., Cheng, Q.S. (2010), "Robust trust-region space-mapping algorithms for microwave design optimization", IEEE Trans. Micro. Theory Tech., Vol. 58 No. 8, pp. 2166-2174. open in new tab
  18. Koziel, S., Bekasiewicz, A. (2016a), "Rapid design optimization of antennas using variable-fidelity EM models and adjoint sensitivities", Eng. Comp., Vol. 33 No. 7, pp. 2007-2018. open in new tab
  19. Koziel, S., Bekasiewicz, A. (2016b), Multi-objective design of antennas using surrogate models, World Scientific. open in new tab
  20. Koziel, S., Bekasiewicz, A. (2016c), "Low-cost multi-objective optimization of antennas using Pareto front exploration and response features", IEEE Int. Symp. Ant. Prop., pp. 571-572. open in new tab
  21. Koziel, S., Ogurtsov, S. (2014), Antenna design by simulation-driven optimization. Surrogate-based approach, Springer. open in new tab
  22. Lalbakhsh, A., Afzal, M.U., Esselle, K.P. (2017), "Multiobjective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band- gap resonator antenna", IEEE Ant. Wireless Prop. Lett., Vol. 16, pp. 912-915. open in new tab
  23. Mailloux, R.J. (2005), Phased array antenna handbook. 2nd ed., Artech House.
  24. Nair, R.U., Jha, R.M. (2014), "Electromagnetic design and performance analysis of airborne radomes: trends and perspective", IEEE Ant. Prop. Mag., Vol. 56 No. 4, pp. 276-298. open in new tab
  25. Nocedal, J., Wright, S. (2006), Numerical Optimization. 2nd ed., Springer. open in new tab
  26. Nosrati, M., Tavassolian, N. (2017), "Miniaturized circularly polarized square slot antenna with enhanced axial-ratio bandwidth using an antipodal y-strip", IEEE Antennas Wireless Propag. Lett., Vol. 16, pp. 817-820. open in new tab
  27. Sarkar, D., Srivastava, K.V., Saurav, K. (2014), "A compact microstrip-fed triple band- notched UWB monopole antenna", IEEE Antennas Wireless Prop. Lett., Vol. 13, pp. 396-399. open in new tab
  28. Soltani, S., Lotfi, P., Murch, R.D. (2018), "Design and optimization of multiport pixel antennas", IEEE Trans. Ant. Prop., Vol. 66 No. 4, pp. 2049-2054. open in new tab
  29. Suryawanshi, D.R. and Singh, B.A. (2014), "A compact UWB rectangular slotted monopole antenna", IEEE Int. Conf. Control, Instrumentation, Comm. Comp. Tech. (ICCICCT), pp. 1130-1136. open in new tab
  30. de Villiers, D.I.L., Couckuyt, I., Dhaene, T. (2017), "Multi-objective optimization of reflector antennas using kriging and probability of improvement", IEEE Int. Symp. Ant. Prop., pp. 985-986. open in new tab
  31. Volakis, J.L. (Ed.) (2007), Antenna Engineering Handbook. 4th ed., McGraw Hill.
  32. Zhang, S., Pedersen, G.F. (2016), "Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line", IEEE Ant. Wireless Prop. Lett., Vol. 15, pp. 166- 169. open in new tab
  33. Zhou, C. F., Cheung, S.W. (2017), "A wideband CP crossed slot antenna using 1-lambda resonant mode with single feeding", IEEE Trans. Ant. Prop., Vol. 65 No. 8, pp. 4268- 4273. open in new tab
Verified by:
Gdańsk University of Technology

seen 144 times

Recommended for you

Meta Tags