Experimental and predicted physicochemical properties of monopropanolamine-based deep eutectic solvents - Publication - Bridge of Knowledge

Search

Experimental and predicted physicochemical properties of monopropanolamine-based deep eutectic solvents

Abstract

In this work, the novel deep eutectic solvents (DESs) based on 3-amino-1-propanol (AP) as hydrogen bond donor (HBD) and tetrabutylammonium bromide (TBAB) or tetrabutylammonium chloride (TBAC) or tetraethylammonium chloride (TEAC) as hydrogen bond acceptors (HBAs) were synthesized with different molar ratios of 1:4, 1:6 and 1:8 salt to AP. Fourier Transform Infrared Spectroscopy measurements were performed to provide an evidence of any chemical structure changes. Physical properties of the prepared DESs including densities, viscosities, refractive indices and sound velocities were measured within the temperature range of 293.15 – 333.15 K at the pressure of 0.1 MPa. They were analysed in terms of estimating the effect of HBA to HBD molar ratio, anion and length of alkyl chain in a salt, and their temperature dependences were fitted by empirical equations. Thermal expansion coefficients and activation energies for viscous flow were obtained accordingly. Moreover, experimental values of density and refractive index were compared with predicted ones. For prediction of density, Rackett equation modified by Spencer and Danner and the mass connectivity index-based method were used, while refractive index was estimated by the atomic contribution method.

Citations

  • 5 0

    CrossRef

  • 0

    Web of Science

  • 4 9

    Scopus

Cite as

Full text

download paper
downloaded 215 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF MOLECULAR LIQUIDS no. 309,
ISSN: 0167-7322
Language:
English
Publication year:
2020
Bibliographic description:
Nowosielski B., Jamrógiewicz M., Łuczak J., Śmiechowski M., Warmińska D.: Experimental and predicted physicochemical properties of monopropanolamine-based deep eutectic solvents// JOURNAL OF MOLECULAR LIQUIDS -Vol. 309, (2020), s.113110-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.molliq.2020.113110
Bibliography: test
  1. N. Du, et al., Polymer nanosieve membranes for CO2-capture applications, Nat. Mater. 10 (5) (2011) 372-375. open in new tab
  2. G.T. Rochelle, Amine scrubbing for CO2 capture, Science (80-.) 325 (5948) (2009) 1652-1654. open in new tab
  3. X. Li, M. Hou, B. Han, X. Wang, L. Zou, Solubility of CO2 in a choline chloride + urea eutectic mixture, J. Chem. Eng. Data 53 (2) (2008) 548-550. open in new tab
  4. Y. Marcus, Deep Eutectic Solvents, Springer International Publishing, 2019. open in new tab
  5. S. Sarmad, J.P. Mikkola, X. Ji, Carbon dioxide capture with ionic liquids and deep eu- tectic solvents: a new generation of sorbents, ChemSusChem 10 (2) (2017) 324-352. open in new tab
  6. I. Adeyemi, M.R.M. Abu-Zahra, I. Alnashef, Experimental study of the solubility of CO2in novel amine based deep eutectic solvents, Energy Procedia 105 (2017) 1394-1400. open in new tab
  7. T.J. Trivedi, J.H. Lee, H.J. Lee, Y.K. Jeong, J.W. Choi, Deep eutectic solvents as attractive media for CO2 capture, Green Chem. 18 (9) (2016) 2834-2842. open in new tab
  8. S.K. Shukla, J.P. Mikkola, Intermolecular interactions upon carbon dioxide capture in deep-eutectic solvents, Phys. Chem. Chem. Phys. 20 (38) (2018) 24591-24601. open in new tab
  9. H. Ghaedi, et al., Density, excess and limiting properties of (water and deep eutectic solvent) systems at temperatures from 293.15 K to 343.15 K, J. Mol. Liq. 248 (2017) 378-390. open in new tab
  10. I. Adeyemi, M.R.M. Abu-Zahra, I. Alnashef, Novel green solvents for CO2 capture, En- ergy Procedia 114 (2017) 2552-2560. open in new tab
  11. F.S. Mjalli, G. Murshid, S. Al-Zakwani, A. Hayyan, Monoethanolamine-based deep eutectic solvents, their synthesis and characterization, Fluid Phase Equilib. 448 (2017) 30-40. open in new tab
  12. I. Adeyemi, M.R.M. Abu-Zahra, I.M. AlNashef, Physicochemical properties of alkanolamine-choline chloride deep eutectic solvents: measurements, group contri- bution and artificial intelligence prediction techniques, J. Mol. Liq. 256 (2018) 581-590. open in new tab
  13. M.B. Haider, D. Jha, B. Marriyappan Sivagnanam, R. Kumar, Thermodynamic and ki- netic studies of CO2 capture by glycol and amine-based deep eutectic solvents, J. Chem. Eng. Data 63 (8) (2018) 2671-2680. open in new tab
  14. E. Ali, et al., Solubility of CO2 in deep eutectic solvents: experiments and modelling using the Peng-Robinson equation of state, Chem. Eng. Res. Des. 92 (10) (2014) 1898-1906. open in new tab
  15. A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent prop- erties of choline chloride/urea mixtures, Chem. Commun. 9 (1) (2003) 70-71. open in new tab
  16. E.L. Smith, A.P. Abbott, K.S. Ryder, Deep eutectic solvents (DESs) and their applica- tions, Chem. Rev. 114 (21) (2014) 11060-11082. open in new tab
  17. Q. Zhang, K. De Oliveira Vigier, S. Royer, F. Jérôme, Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev. 41 (21) (2012) 7108-7146. open in new tab
  18. T.L. Greaves, A. Weerawardena, C. Fong, I. Krodkiewska, C.J. Drummond, Protic ionic liquids: solvents with tunable phase behavior and physicochemical properties, J. Phys. Chem. B 110 (45) (2006) 22479-22487. open in new tab
  19. S.B. Capelo, et al., Effect of temperature and cationic chain length on the physical properties of ammonium nitrate-based protic ionic liquids, J. Phys. Chem. B 116 (36) (2012) 11302-11312. open in new tab
  20. K. Shahbaz, S. Baroutian, F.S. Mjalli, M.A. Hashim, I.M. Alnashef, Densities of ammo- nium and phosphonium based deep eutectic solvents: prediction using artificial in- telligence and group contribution techniques, Thermochim. Acta 527 (2012) 59-66. open in new tab
  21. K. Shahbaz, F.S. Mjalli, M.A. Hashim, I.M. Alnashef, Prediction of deep eutectic sol- vents densities at different temperatures, Thermochim. Acta 515 (1-2) (2011) 67-72. open in new tab
  22. F.S. Mjalli, Mass connectivity index-based density prediction of deep eutectic sol- vents, Fluid Phase Equilib. 409 (2016) 312-317. open in new tab
  23. H.G. Rackett, Equation of state for saturated liquids, J. Chem. Eng. Data 15 (4) (1970) 514-517. open in new tab
  24. C.F. Spencer, R.P. Danner, Improved equation for prediction of saturated liquid den- sity, J. Chem. Eng. Data 17 (2) (1972) 236-241. open in new tab
  25. H. Knapp, R. Doring, L. Oellrich, U. Plocker, J.M. Prausnitz, Vapor-liquid Equilibria for Mixtures of Low Boiling Substances, Chemistry Data Series, VI, , DECHEMA, Frank- furt, Ger. 1982, 1982.
  26. V.H. Alvarez, J.O. Valderrama, A modified Lydersen-Joback-Reid method to estimate the critical properties of biomolecules, Alimentaria 254 (2004) 55-66. open in new tab
  27. M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (23) (1975) 6609-6615. open in new tab
  28. J.O. Valderrama, R.E. Rojas, Mass connectivity index, a new molecular parameter for the estimation of ionic liquid properties, Fluid Phase Equilib. 297 (1) (2010) 107-112. open in new tab
  29. L. Glasser, Lattice and phase transition thermodynamics of ionic liquids, Thermochim. Acta 421 (1-2) (2004) 87-93. open in new tab
  30. D.R. Lide, CRC Handbook of Chemistry and Physics, 85, CRC press, 2004. open in new tab
  31. S. Sarmad, Y. Xie, J.P. Mikkola, X. Ji, Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity, New J. Chem. 41 (1) (2017) 290-301. open in new tab
  32. M.H. Ghatee, M. Zare, F. Moosavi, A.R. Zolghadr, Temperature-dependent density and viscosity of the ionic liquids 1-alkyl-3-methylimidazolium iodides: experiment and molecular dynamics simulation, J. Chem. Eng. Data 55 (9) (2010) 3084-3088. open in new tab
  33. X. Cao, B.C. Hancock, N. Leyva, J. Becker, W. Yu, V.M. Masterson, Estimating the re- fractive index of pharmaceutical solids using predictive methods, Int. J. Pharm. 368 (1-2) (2009) 16-23. open in new tab
  34. S.A. Wildman, G.M. Crippen, Prediction of physicochemical parameters by atomic contributions, J. Chem. Inf. Comput. Sci. 39 (5) (1999) 868-873. open in new tab
  35. D. Lapeña, L. Lomba, M. Artal, C. Lafuente, B. Giner, Thermophysical characterization of the deep eutectic solvent choline chloride:ethylene glycol and one of its mixtures with water, Fluid Phase Equilib. 492 (2019) 1-9. open in new tab
  36. P.B. Sánchez, B. González, J. Salgado, J. José Parajó, Á. Domínguez, Physical properties of seven deep eutectic solvents based on L-proline or betaine, J. Chem. Thermodyn. 131 (2019) 517-523. open in new tab
  37. A. Basaiahgari, S. Panda, R.L. Gardas, Acoustic, volumetric, transport, optical and rhe- ological properties of Benzyltripropylammonium based deep eutectic solvents, Fluid Phase Equilib. 448 (2017) 41-49. open in new tab
  38. A. Basaiahgari, S. Panda, R.L. Gardas, Effect of ethylene, diethylene, and triethylene glycols and glycerol on the physicochemical properties and phase behavior of benzyltrimethyl and benzyltributylammonium chloride based deep eutectic sol- vents at 283.15-343.15 K, J. Chem. Eng. Data 63 (7) (2018) 2613-2627. open in new tab
  39. C. Cacela, M.L. Duarte, R. Fausto, Structural and vibrational characterization of 3- amino-1-propanol a concerted SCF-MO ab initio, Raman and infrared (matrix isola- tion and liquid phase) spectroscopy study, Spectrochim. Acta -Part A Mol. Biomol. Spectrosc 56 (6) (2000) 1051-1064. open in new tab
  40. S.M. Melnikov, M. Stein, Molecular dynamics study of the solution structure, cluster- ing, and diffusion of four aqueous alkanolamines, J. Phys. Chem. B 122 (10) (2018) 2769-2778. open in new tab
  41. J. Stangret, T. Gampe, Ionic hydration behavior derived from infrared spectra in HDO, J. Phys. Chem. A 106 (21) (2002) 5393-5402. open in new tab
Verified by:
Gdańsk University of Technology

seen 215 times

Recommended for you

Meta Tags