Graphene-Coated PVDF Membranes: Effects of Multi-Scale Rough Structure on Membrane Distillation Performance - Publication - Bridge of Knowledge

Search

Graphene-Coated PVDF Membranes: Effects of Multi-Scale Rough Structure on Membrane Distillation Performance

Abstract

Graphene-coated membranes for membrane distillation have been fabricated by using a wet-filtration approach. Graphene nanoplatelets have been deposited onto PVDF membrane surfaces. Morphology and physicochemical properties have been explored to evaluate the changes in the surface topography and related effects on the membrane performance in water desalination. The membranes have been tested in membrane distillation plants by using mixtures of sodium chloride and humic acid. The multi-scale rough structure of the surface has been envisaged to amplify the wetting and fouling resistance of the graphene-coated membranes so that a better flux and full salt rejection have been achieved in comparison with pristine PVDF. Total salt rejection and an increase of 77% in flux have been observed for coated membrane with optimized graphene content when worked with NaCl 0.6 M (DCMD, ΔT ≈ 24 °C) over a test period of 6 h. The experimental findings suggest these novel graphene-coated membranes as promising materials to develop functional membranes for high-performing water desalination.

Citations

  • 7

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Membranes no. 12,
ISSN: 2077-0375
Language:
English
Publication year:
2022
Bibliographic description:
Gontarek-Castro E., Di Luca G., Lieder M., Gugliuzza A.: Graphene-Coated PVDF Membranes: Effects of Multi-Scale Rough Structure on Membrane Distillation Performance// Membranes -Vol. 12,iss. 5 (2022), s.511-
DOI:
Digital Object Identifier (open in new tab) 10.3390/membranes12050511
Verified by:
Gdańsk University of Technology

seen 76 times

Recommended for you

Meta Tags