Hydrogen production from wood waste by mean of dark fermentation - Publication - Bridge of Knowledge

Search

Hydrogen production from wood waste by mean of dark fermentation

Abstract

The utilization of wood wastes in clean and green chemistry method like by mean of dark fermentation, is a highly desired solution of waste management. In the article model for the estimation hydrogen potential of wood waste is given. The model has been used to calculate the potential theoretical hydrogen mass that can be produced from wood wastes in Pomerania and Silesia: pine, spruce, fir, beech and oak. In the introduction, there describes the process and background of the model and the parameters are explained. In model description the formulas of a model are given with reaction schemes and variables description. In the results and discussion there are calculations of hydrogen potential mass from wood waste in Pomerania and Silesia. The potential hydrogen production from wood waste of these two regions fulfil near 8 times the recent demand of Poland.

Author (1)

  • Photo of  Gaweł Sołowski

    Gaweł Sołowski

    • Doktoranckie Studium Środowiskowe przy wydz. Mechanicznym PG Zakład Fizycznych Aspektów Ekoenergii

Cite as

Full text

download paper
downloaded 146 times
Publication version
Accepted or Published Version
License
Copyright (Department of Technologies and Installations for Waste Management, Silesian University of Technology 2016)

Keywords

Details

Category:
Monographic publication
Type:
rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
Title of issue:
W : Contemporary Problems of Power Engineering and Environmental Protection 2016 strony 189 - 194
Language:
English
Publication year:
2016
Bibliographic description:
Sołowski G.: Hydrogen production from wood waste by mean of dark fermentation// W : Contemporary Problems of Power Engineering and Environmental Protection 2016/ ed. Krzysztof Pikoń , Lucyna Czarnowska : Archiwum Gospodarki Odpadami i Ochrony Środowiska, 2016, s.189-194
Bibliography: test
  1. Bartacek, J; Zabranska, J; Lens PNL. Developments and constraints in fermentative hydrogen production. Biofuels, Bioprod Biorefining 2007;1:201-14. open in new tab
  2. Pradhan N, Dipasquale L, d'Ippolito G, Fontana A, Panico A, Lens PNL, et al. Kinetic modeling of fermentative hydrogen production by Thermotoga neapolitana. Int J Hydrogen Energy 2016;41:4931-40. doi:10.1016/j.ijhydene.2016.01.107. open in new tab
  3. Zajączkowski, Grzegorz; Jabłoński, Marek; Jabłoński, Tomasz; Kowalska, Anna; Małachowska, Jadwiga;Piwnicki J. O STANIE LASÓW. Warsaw: 2015.
  4. Ropińska B. Potential sources and possibilities of biomass energy utilisation for production of agricultural biogas in West Pomeranian Province. In: Jasiulewicz M, editor. Reg. Local Biomass Potential. Polish Eco, Koszalin: Wydawnictwo Politechniki Koszalińskiej; 2011.
  5. Jasiulewicz M. Potencjał biomasy w Polsce. 2010. open in new tab
  6. Sariyildiz T. Litter Decomposition of Picea orientalis , Pinus sylvestris and Castanea sativa Trees Grown in Artvin in Relation to Their Initial Litter Quality Variables 2003;27:237-43. open in new tab
  7. Mahishi MR, Goswami DY. An experimental study of hydrogen production by gasification of biomass in the presence of a CO2 sorbent. Int J Hydrogen Energy 2007;32:2803-8. doi:10.1016/j.ijhydene.2007.03.030. open in new tab
  8. Ivanova G, Rákhely G, Kovács KL. Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrogen Energy 2009;34:3659-70. doi:10.1016/j.ijhydene.2009.02.082. open in new tab
  9. Sharypov VI, Marin N, Beregovtsova NG. Co-pyrolysis of wood biomass and synthetic polymer mixtures. Part I : influence of experimental conditions on the evolution of solids , liquids and gases 2002;64:15-28. open in new tab
  10. Xu C, Leppänen A-S, Eklund P, Holmlund P, Sjöholm R, Sundberg K, et al. Acetylation and characterization of spruce (Picea abies) galactoglucomannans. Carbohydr Res 2010;345:810-6. doi:10.1016/j.carres.2010.01.007. open in new tab
  11. Kacik, Frantisek; Smira, Pavel; Reinprecht, Ladislav; Nasswettrová A. CHEMICAL CHANGES IN FIR WOOD FROM OLD BUILDINGS DUE TO AGEING. Cellul Chem Technol 2014;48:79-88.
  12. Wagenfuhr, R; Schreiber C. Holzatlas. Leibzig: V.E.B. Fachbuchverlag; 1974.
  13. Agencja Rynku Rolnego. Rynek zbóż w Polsce. Warsaw: 2013.
  14. Taherzadeh MJ, Karimi K. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. vol. 9. 2008. doi:10.3390/ijms9091621. open in new tab
  15. Karimi K, Taherzadeh MJ. A critical review on analysis in pretreatment of lignocelluloses: Degree of polymerization, adsorption/desorption, and accessibility. Bioresour Technol 2016;203:348-56. doi:10.1016/j.biortech.2015.12.035. open in new tab
  16. Sołowski G. Theoretical potential of hydrogen production from textiles wastes in pomeranian region by means of dark fermentation. Glob a Reg Ochr Sr 2016;1:313-7. open in new tab
  17. Biedron J. krwioobieg nowoczesnej rafinerii, a może paliwo przyszłości? Gdańsk: 2015. open in new tab
  18. Gardziński W., Molenda J. Źródła i wykorzystanie wodoru w rafineriach ropy naftowej. Przem Chem 2005;84:825-8.
  19. Hawkes FR, Dinsdale R, Hawkes DL, Hussy I. Sustainable fermentative hydrogen production: Challenges for process optimisation. Int J Hydrogen Energy 2002;27:1339-47. doi:10.1016/S0360-3199(02)00090-3. open in new tab
  20. Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 2009;100:10-8. doi:10.1016/j.biortech.2008.05.027. open in new tab
  21. Singh S, Jain S, PS V, Tiwari AK, Nouni MR, Pandey JK, et al. Hydrogen: A sustainable fuel for future of the transport sector. Renew Sustain Energy Rev 2015;51:623-33. doi:10.1016/j.rser.2015.06.040. open in new tab
  22. Urbaniec K, Grabarczyk R. Raw materials for fermentative hydrogen production. J Clean Prod 2009;17:959-62. doi:10.1016/j.jclepro.2009.02.008. open in new tab
  23. Panagiotopoulos JA, Bakker RR, Vrije T De, Urbaniec K, Koukios EG, Claassen PAM. Prospects of utilization of sugar beet carbohydrates for biological hydrogen production in the EU. J Clean Prod 2010;18:S9-14. doi:10.1016/j.jclepro.2010.02.025. open in new tab
  24. Panagiotopoulos IA, Bakker RR, Budde MAW, de Vrije T, Claassen PAM, Koukios EG. Fermentative hydrogen production from pretreated biomass: a comparative study. Bioresour Technol 2009;100:6331-8. doi:10.1016/j.biortech.2009.07.011. open in new tab
  25. Sołowski G. "Obróbka Lignocelulozy-Pierwszy Etap Zielonej Energii, Chemii Wraz Z Wodorem". In: Szala, M., Kropiwniec K, editor. Wybrane zagadnienia z Zakr. Ochr. środowiska i energii odnawialnej. 1st ed., Lublin: Fundacja Tygiel; 2016, p. 56-75.
  26. Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int J Hydrogen Energy 2007;32:172-84. doi:10.1016/j.ijhydene.2006.08.014. open in new tab
Verified by:
Gdańsk University of Technology

seen 130 times

Recommended for you

Meta Tags