Impact of high temperature drying process on beech wood containing tension wood - Publication - Bridge of Knowledge

Search

Impact of high temperature drying process on beech wood containing tension wood

Abstract

The technology of high temperature drying has a great inuence on dimensional and selected physical changes in tension wood. Article is focused on the measurement properties such as moisture content, color changes and longitudinal warping. The quality of beech wood is determined based on structure and properties of wood, frequency of defects in wood material. The tension wood is considered as an important wood defect causing negative alterations in solidwood quality and limits industrial application ofwood. The dierent values of longitudinalwarpingwhichwere measured after dryingwere higher in tensionwood than in normalwood. Impact of radial and tangential angle of growth rings is non-signicant factor.

Citations

  • 7

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Cite as

Full text

download paper
downloaded 39 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Open Engineering no. 9, pages 428 - 433,
ISSN: 2391-5439
Language:
English
Publication year:
2019
Bibliographic description:
Klement I., Vilkovská T., Miroslav U., Barański J., Konopka A.: Impact of high temperature drying process on beech wood containing tension wood// Open Engineering -Vol. 9,iss. 1 (2019), s.428-433
DOI:
Digital Object Identifier (open in new tab) 10.1515/eng-2019-0047
Bibliography: test
  1. Vilkovský, P., Čunderlík, I., Structure of phloem and wood/bark shear strength of the sessile oak during dormant and growing period. In: Acta Facultatis Xylologiae Zvolen., 2017 59 (1), 17- 26pp. ISSN 1336-3824
  2. Hitka, M., Joščák, P., Langová, N., Krišťák, L., Blašková, S., Load- carrying Capacity and the Size of Chair Joints Determined for Users with a Higher Body Weight. Bioresources, 2018 13(3), 6428-6443.
  3. Réh, R.; Krišťák, Ľ.; Hitka, M.; Langová, N.; Joščák, P.; Čambál, M. Analysis to Improve the Strength of Beds Due to the Ex- cess Weight of Users in Slovakia. Sustainability 2019, 11, 624 doi:10.3390/su11030624 open in new tab
  4. Kúdela, J.; Čunderlík, I., 2012: Bukové drevo štruktúra, vlast- nosti, použitie, Technická univerzita vo Zvolene, pp.152. ISBN 978-80-228-2318-0 (in Slovak).
  5. Klaric, K., Greger, K., Klaric, M., Andric, T., Hitka, M., Kropivsek, J., An Exploratory Assessment of FSC Chain of Custody Certi - cation Bene ts in Croatian Wood Industry in Drvna Industrija, 2016, 67(3) pp 241-248 DOI: 10.5552/drind.2016.1540 open in new tab
  6. Čunderlík, I., Hudec, I., Axial permeability of normal and tension beech wood. Wood structure and properties '02. Zvolen: Arbora publishers, 2002, pp. 201-208.
  7. Clair, B.; Thibaut, B., Shrinkage of the gelatinous layer of poplar and beech tension wood. IAWA Journal., 2001, Vol. 22, pp. 121- 131. open in new tab
  8. Washusen, R.; Ilic, J.; Waugh, G., The relationship between lon- gitudinal growth strain and the occurrence of gelatinous bers in 10-and 11-year-old (Eucalyptus globulus L.). Holz als Roh-und Werksto . 2003. 61 (4), pp. 299-303. open in new tab
  9. Yamamoto, H.; Ruelle, J.; Arakawa, Y.; Yoshida, M.; Clair, B.; Gril, J., Origin of the characteristic hygromechanical properties of the gelatinous layer in tension wood from Kunugi oak (Quercus acutissima). Wood Science and Technology. 2010, 44, pp. 149- 163. open in new tab
  10. Tarmian, A.; Foroozan, Z.; Gholamiyan, H.; Gérard, J., The quan- titative e ect of drying on the surface color change of reaction woods: Spruce compression wood (Picea abies L.) and poplar tension wood (Populus nigra L.). Drying Technology., 2011, 29 (15), pp. 1814-1819. open in new tab
  11. Siau, J., F., 1984: Transport processes in wood. Berlin; Heidel- berg; New York; Tokio: Springer-Verlag, pp. 245.
  12. Čunderlík, I., 1997: Relaxation of growth stresses in tension beech wood during steaming and drying. In: Medinárodná vedecká konferenica Les-Drevo-Životné prostredie '97, Zvolen: Technická Univerzita vo Zvolene, Slovakia, pp. 115-120.
  13. Klement, I.; Vilkovská, T. Color Characteristics of Red False Heartwood and Mature Wood of Beech (Fagus sylvatica L.) De- termining by Di erent Chromacity Coordinates. Sustainability 2019, 11, 690, doi:10.3390/su11030690 open in new tab
  14. Badia, M.; Mothe, F.; Constant, T.; Nepveu, G., 2005: Assess- ment of tension wood detection based on shiny appearance for three poplar cultivars. Annals of Forest Science, Springer Verlag (Germany). 62 (1), pp. 43-49. open in new tab
  15. Sujan, K.C, Hiroyuki, Yamamoto., Miyuki, Matsuo., Masato Yoshida., Kazuhiro, Naito., Tatsuya, Shirai., Continuum contrac- tion of tension wood ber induced by repetitive hygrothermal treatment, In: Wood Sci Technol, Berlin Heidelberg: Springer- Verlag, 2015, Roč. 49, s. 1157-1169, DOI 10.1007/s00226-015- 0762-4. open in new tab
  16. Cividini, R., Travan, L., and Allegretti, O., White beech a tricky problem in drying process,(http://www.ivalsa.cnr.it/ leadmin/ ivalsa/ les/documenti/pubblicazioni/2008_Drying_process_ for_whithe_beech.pdf), Accessed April 25, 2017.
  17. Chang, S.; Clair, B.; Ruelle, J.; Beauchêne, J.; Di Renzo, F.; Quig- nard, F.; Zhao, G.; Yamamoto, H.; Gril, J., Mesoporosity as a new parameter for understanding tension stress generation in trees. Journal of Experimental Botany., 2009, 60 (11), pp. 3023-3030. open in new tab
  18. Nemec, F., Lorincova, S., Hitka, M., Turinska, L., The Storage Area Market in the Particular Territory in Nase more., 2015, 62 (3), pp131-138 DOI: 10.17818/NM/2015/SI8 open in new tab
  19. Klement, I., Vilkovská, T., Barański, J., Konopka, A., The impact of drying and steaming processes on surface color changes of tension and normal beech wood, Drying Technology, 2018, DOI: 10.1080/07373937.2018.1509219 open in new tab
Verified by:
Gdańsk University of Technology

seen 153 times

Recommended for you

Meta Tags