Influence of proton irradiation on the magnetic properties of two-dimensional Ni(II) molecular magnet - Publication - Bridge of Knowledge

Search

Influence of proton irradiation on the magnetic properties of two-dimensional Ni(II) molecular magnet

Abstract

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Authors (5)

  • Photo of  Dominik Czernia

    Dominik Czernia

  • Photo of  Piotr Konieczny

    Piotr Konieczny

  • Photo of  Ewa Juszyńska-Gałązka

    Ewa Juszyńska-Gałązka

  • Photo of  Janusz Lekki

    Janusz Lekki

Cite as

Full text

download paper
downloaded 20 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Details

Category:
Magazine publication
Type:
Magazine publication
Published in:
Scientific Reports no. 13,
ISSN: 2045-2322
Publication year:
2023
DOI:
Digital Object Identifier (open in new tab) 10.1038/s41598-023-41156-8
Bibliography: test
  1. Raman, K. V. et al. Interface-engineered templates for molecular spin memory devices. Nature 493, 509-513 (2013). open in new tab
  2. Aguilà, D. et al. Heterodimetallic [LnLn'] lanthanide complexes: Toward a chemical design of two-qubit molecular spin quantum gates. J. Am. Chem. Soc. 136, 14215-14222 (2014). open in new tab
  3. Pedersen, K. S. et al. Toward molecular 4f single-ion magnet qubits. J. Am. Chem. Soc. 138, 5801-5804 (2016). open in new tab
  4. Coronado, E. Molecular magnetism: From chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 5, 87-104 (2020). open in new tab
  5. Song, T. Q. et al. Wheel-like Ln 18 cluster organic frameworks for magnetic refrigeration and conversion of CO 2 . Inorg. Chem. 57, 3144-3150 (2018). open in new tab
  6. Scientific Reports | (2023) 13:14032 | https://doi.org/10.1038/s41598-023-41156-8 open in new tab
  7. Zheng, X. Y., Kong, X. J., Zheng, Z., Long, L. S. & Zheng, L. S. High-nuclearity lanthanide-containing clusters as potential molecular magnetic coolers. Acc. Chem. Res. 51, 517-525 (2018). open in new tab
  8. Wang, W. M. et al. Large magnetocaloric effect and remarkable single-molecule-magnet behavior in triangle-assembled Ln III 6 clusters. New J. Chem. 43, 16639-16646 (2019). open in new tab
  9. Konieczny, P. et al. Magnetic cooling: A molecular perspective. Dalt. Trans. 51, 12762-12780 (2022). open in new tab
  10. Korzeniak, T. et al. Chiral photomagnets based on Copper(II) complexes of 1,2-Diaminocyclohexane and Octacyanidomolybdate(IV) Ions. Inorg. Chem. 59, 5872-5882 (2020). open in new tab
  11. Jiang, W. et al. Switching single chain magnet behavior: Via photoinduced bidirectional metal-to-metal charge transfer. Chem. Sci. 9, 617-622 (2018). open in new tab
  12. Yue, Q. & Gao, E. Q. Azide and carboxylate as simultaneous coupler for magnetic coordination polymers. Coord. Chem. Rev. 382, 1-31 (2019). open in new tab
  13. Pedersen, K. S., Bendix, J. & Clérac, R. Single-molecule magnet engineering: Building-block approaches. Chem. Commun. 50, 4396-4415 (2014). open in new tab
  14. Vallone, S. P. et al. Giant barocaloric effect at the spin crossover transition of a molecular crystal. Adv. Mater. 31, 1-7 (2019). open in new tab
  15. Bridonneau, N. et al. Direct evidence of a photoinduced electron transfer in diluted "molybdenum-copper" molecular compounds. Eur. J. Inorg. Chem. 2018, 370-377 (2018). open in new tab
  16. Makgato, T. N. et al. Magnetic properties of point defects in proton irradiated diamond. J. Magn. Magn. Mater. 413, 76-80 (2016). open in new tab
  17. Esquinazi, P. et al. Induced magnetic ordering by proton irradiation in graphite. Phys. Rev. Lett. 91, 8-11 (2003). open in new tab
  18. Kasper, C. et al. Influence of irradiation on defect spin coherence in silicon carbide. Phys. Rev. Appl. 13, 1 (2020). open in new tab
  19. Yang, Z. P., Tan, C. L., Gao, Z. Y., Gao, Y. & Cai, W. Effect of proton irradiation on microstructural and magnetic properties of ferromagnetic Ni-Mn-Ga thin films. Thin Solid Films 632, 10-16 (2017). open in new tab
  20. Ghigo, G. et al. Effects of proton irradiation on the magnetic superconductor EuFe 2 (As 1-x P x ) 2 . Supercond. Sci. Technol. 33, 94011 (2020). open in new tab
  21. Patki, P. V., Wu, Y. & Wharry, J. P. Effects of proton irradiation on microstructure and mechanical properties of nanocrystalline Cu-10at%Ta alloy. Materialia 9, 100597 (2020). open in new tab
  22. Smith, K. A. et al. Effect of proton irradiation on anatase TiO 2 nanotube anodes for lithium-ion batteries. J. Mater. Sci. 54, 13221-13235 (2019). open in new tab
  23. Smith, K. A. et al. Effects of proton irradiation on structural and electrochemical charge storage properties of TiO 2 nanotube electrodes for lithium-ion batteries. J. Mater. Chem. A 5, 11815-11824 (2017). open in new tab
  24. Dutta, T. et al. Non-destructive patterning of 10 nm magnetic island array by phase transformation with low-energy proton irra- diation. Appl. Phys. Lett. 111, 1-6 (2017). open in new tab
  25. Kim, S. et al. Nanoscale patterning of complex magnetic nanostructures by reduction with low-energy protons. Nat. Nanotechnol. 7, 567-571 (2012). open in new tab
  26. Avasthi, D. K. & Mehta, G. K. Swift Heavy Ions for Materials Engineering and Nanostructuring (Springer Series in Materials Science (Springer), 2011). open in new tab
  27. Esquinazi, P. D. et al. Defect-induced magnetism in nonmagnetic oxides: Basic principles, experimental evidence, and possible devices with ZnO and TiO 2 . Phys. Status Solidi Res. 257, 1900623 (2020). open in new tab
  28. Zhou, R. W., Liu, X. C., Li, F. & Shi, E. W. Defects induced ferromagnetism in hydrogen irradiated 3C-SiC thin films. Mater. Lett. 156, 54-57 (2015). open in new tab
  29. Hassan, N. U. et al. Influence of ion beam irradiation on structural, magnetic and electrical characteristics of ho-doped AlN thin films. Surf. Rev. Lett. 24, 1-7 (2017). open in new tab
  30. Matsushita, M., Matsushima, Y., Uruga, T., Ishigami, R. & Iwase, A. Effect of 50-keV proton irradiation on the magnetism of a Fe 66 Ni 34 Invar alloy. J. Magn. Magn. Mater. 333, 13-17 (2013). open in new tab
  31. Matsushita, M., Wada, H. & Matsushima, Y. Effects of fluence and fluence rate of proton irradiation upon magnetism in Fe 65 Ni 35 Invar alloy. J. Magn. Magn. Mater. 394, 491-495 (2015). open in new tab
  32. Kim, S. J., Lee, K. J., Jung, M. H., Oh, H. J. & Kwon, Y. S. Magnetocaloric effect in la (Fe 0.89 Si 0.11 ) 13 irradiated by protons. J. Magn. Magn. Mater. 323, 1094-1097 (2011). open in new tab
  33. Jiang, X. D. et al. Influence of the interface on the magnetic properties of NiZn ferrite thin films treated by proton irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam. Interact. Mater. Atoms. 358, 1-5 (2015). open in new tab
  34. Jeon, G. W., Lee, K. W. & Lee, C. E. High-energy proton-irradiation effects on the magnetism of the transition-metal dichalcogenide MoS 2 . J. Korean Phys. Soc. 76, 93-96 (2020). open in new tab
  35. Mathew, S. et al. Magnetism in MoS 2 induced by proton irradiation. Appl. Phys. Lett. 101, 102103 (2012). open in new tab
  36. González Guillén, A. B. et al. Tuning magnetic properties by crystal engineering in a family of coordination polymers based on Ni(II) sulphates. New J. Chem. 46, 14786-14792 (2022). open in new tab
  37. Dijs, I. J., De Koning, R., Geus, J. W. & Jenneskens, L. W. Anhydrous zirconium(IV) sulfate and tin(IV) sulfate: Solid Lewis acid catalysts in liquid-phase hydro-acyloxy-addition reactions?. Phys. Chem. Chem. Phys. 3, 4423-4429 (2001). open in new tab
  38. Nakagawa, I. & Shimanouchi, T. Infrared spectroscopic study on the co-ordination bond-II. Spectrochim. Acta 18, 101-113 (1962). open in new tab
  39. Yao, W., Yu, S.-H., Jiang, J. & Zhang, L. Complex wurtzite znse microspheres with high hierarchy and their optical properties. Chem. A Eur. J. 12, 2066-2072 (2006). open in new tab
  40. Pinkowicz, D. et al. Nature of magnetic interactions in 3D {[MII(pyrazole) 4 ] 2 [NbIV(CN) 8 ]·4H 2 O}n (M = Mn, Fe Co, Ni) molecular magnets. Inorg. Chem. 49, 7565-7576 (2010). open in new tab
  41. Dubiel, S. M. & Felner, I. On the magnetism of C 14 Nb(Fe 89.4 Al 10.6 ) 2 laves phase intermetallic compound. Epl 128, 27005 (2019). open in new tab
  42. Dubiel, S. M., Felner, I. & Tsindlekht, M. I. Magnetic phase diagram of sigma-phase Fe 55 Re 45 compound in the H-T coordinates. J. Appl. Phys. 126, 154 (2019). open in new tab
  43. Shin, J. et al. Proton irradiation effects on mechanochemically synthesized and flash-evaporated hybrid organic-inorganic lead halide perovskites. Nanotechnology 33, 065706 (2022). open in new tab
  44. Shah, S., Qureshi, A., Singh, N. L., Singh, K. P. & Ganesan, V. Modification of polymer composite by proton beam irradiation. Soft Mater. 6, 75-84 (2008). open in new tab
  45. He, X. et al. Irradiation-induced magnetic ordering in SiC: Experimental results and a density functional study. Appl. Phys. Lett. 103, 262409 (2013). open in new tab
  46. Yang, Z. P., Sun, B., Gao, Z. Y. & Cai, W. Surface modifications and tailoring magnetism in Ni 48.4 Mn 28.8 Ga 22.8 films by 120 keV proton irradiation. Intermetallics 98, 106-114 (2018). open in new tab
  47. Liu, Y. et al. Towards diluted magnetism in TaAs. Phys. Rev. Mater. 1, 044203 (2017). open in new tab
  48. Stöffler, D., Drescher, M., de Jauregui, D. S., Gmeiner, J. & Dormann, E. Proton irradiation defects in (fluoranthene) 2 PF 6 . Phys. Lett. A 363, 317-321 (2007). open in new tab
  49. Bain, G. A. & Berry, J. F. Diamagnetic corrections and Pascal's constants. J. Chem. Educ. 85, 532-536 (2008). open in new tab
  50. Scientific Reports | (2023) 13:14032 | https://doi.org/10.1038/s41598-023-41156-8 open in new tab
Verified by:
No verification

seen 65 times

Meta Tags