Light-Powered Starter for Micro-Power Boost DC–DC Converter for CMOS Image Sensors - Publication - Bridge of Knowledge

Search

Light-Powered Starter for Micro-Power Boost DC–DC Converter for CMOS Image Sensors

Abstract

The design of a starter for a low-voltage, micro-power boost DC–DC converter intended for powering CMOS image sensors is presented. A unique feature of the starter is extremely low current, below 1 nA, supplying its control circuit. Therefore, a high-voltage (1.3 V) configuration of series-connected photovoltaic diodes available in a standard CMOS process or a small external LED working in photovoltaic mode can be used as an auxiliary supply for the control circuit. With this auxiliary supply, the starter can generate a starting voltage from 1 to 2.7 V using 50–200 mV supply voltage. The starter was verified by simulations and measurements of a prototype chip fabricated in a standard 180-nm CMOS technology. The results of simulations and tests showed correct operation of the starter in the temperature from 0 to 50 °C and under process parameters variation.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cite as

Full text

download paper
downloaded 36 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
CIRCUITS SYSTEMS AND SIGNAL PROCESSING no. 39, pages 1192 - 1212,
ISSN: 0278-081X
Language:
English
Publication year:
2020
Bibliographic description:
Blakiewicz G., Jakusz J., Kłosowski M., Jendernalik W., Szczepański S.: Light-Powered Starter for Micro-Power Boost DC–DC Converter for CMOS Image Sensors// CIRCUITS SYSTEMS AND SIGNAL PROCESSING -Vol. 39,iss. 3 (2020), s.1192-1212
DOI:
Digital Object Identifier (open in new tab) 10.1007/s00034-019-01194-y
Bibliography: test
  1. E. Carlson, K. Strunz, B. Otis, A 20 mV input boost converter with efficient digital control for thermo- electric energy harvesting. IEEE J. Solid-State Circuits 45, 741-750 (2010). https://doi.org/10.1109/ JSSC.2010.2042251 open in new tab
  2. J. Damaschke, Design of a low-input-voltage converter for thermoelectric generator. IEEE Trans. Ind. Appl. 33, 1203-1207 (1997). https://doi.org/10.1109/28.633797 open in new tab
  3. I. Doms, P. Merken, R. Mertens, C. Van Hoof, Integrated capacitive power-management circuit for thermal harvesters with output power 10 to 1000 µW, in Digest of Technical Papers IEEE Interna- tional Solid-State Circuits Conference (ISSCC) (2009), pp. 300-301. https://doi.org/10.1109/isscc. 2009.4977427 open in new tab
  4. H. Fuketa, S. O'uchi, T. Matsukawa, Fully integrated, 100-mV minimum input voltage converter with gate-boosted charge pump kick-started by LC oscillator for energy harvesting. IEEE Trans. Circuits Syst. II Express Briefs 64, 392-396 (2017). https://doi.org/10.1109/tcsii.2016.2573382 open in new tab
  5. J.-P. Im, S.-W. Wang, S.-T. Ryu, G.-H. Cho, A 40 mV transformer-reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting. IEEE J. Solid-State Circuits 47, 3055-3067 (2012). https://doi.org/10.1109/JSSC.2012.2225734 open in new tab
  6. W. Jendernalik, G. Blakiewicz, J. Jakusz, S. Szczepański, An analog sub-miliwatt CMOS image sensor with pixel-level convolution processing. IEEE Trans. Circuits Syst. I Reg. Pap. 60, 279-289 (2013). https://doi.org/10.1109/tcsi.2012.2215803 open in new tab
  7. J. Katic, S. Rodriguez, A. Rusu, A dual-output thermoelectric energy harvesting interface with 86.6% peak efficiency at 30 µW and total control power of 160 nW. IEEE J. Solid-State Circuits 51, 189-204 (2016). https://doi.org/10.1109/jssc.2016.2561959 open in new tab
  8. M. Kłosowski, W. Jendernalik, J. Jakusz, G. Blakiewicz, S. Szczepański, A CMOS pixel with embedded ADC, digital CDS and gain correction capability for massively parallel imaging array. IEEE Trans. Circuits Syst. I Reg. Pap. 64, 38-49 (2017). https://doi.org/10.1109/tcsi.2016.2610524 open in new tab
  9. K.R. Laker, W.M.C. Sansen, Design of Analog Integrated Circuits and Systems (McGraw-Hill, New York, 1994)
  10. M.K. Law, A. Bermak, High-voltage generation with stacked photodiodes in standard CMOS process. IEEE Electron Device Lett. 31, 1425-1427 (2010). https://doi.org/10.1109/LED.2010.2075910 open in new tab
  11. V. Leonov, T. Torfs, P. Fiorini, C. Van Hoof, Thermoelectric converters of human warmth for self- powered wireless sensor nodes. IEEE Sens. J. 5, 650-657 (2007). https://doi.org/10.1109/JSEN.2007. 894917 open in new tab
  12. B. Lim, J. Seo, S. Lee, A Colpitts oscillator-based self-starting boost converter for thermoelectric energy harvesting with 40-mV startup voltage and 75% maximum efficiency. IEEE J. Solid-State Circuits 53, 3293-3302 (2018). https://doi.org/10.1109/JSSC.2018.2863951 open in new tab
  13. L. Liu, J. Mu, N. Ma, W. Tu, Z. Zhu, Y. Yang, An ultra-low-power integrated RF energy harvesting system in 65-nm CMOS process. Circuits Syst. Signal Process. 35, 421-441 (2016). https://doi.org/ 10.1007/s00034-015-0092-7 open in new tab
  14. R.D. Prabha, G.A. Rincon-Mora, CMOS photovoltaic-cell layout configurations for harvesting microsystems, in Proceedings of International Midwest Symposium on Circuits and Systems (MWS- CAS) (2013), pp. 368-371. https://doi.org/10.1109/mwscas.2013.6674662 open in new tab
  15. Y. Ramadass, A. Chandrakasan, An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J. Solid-State Circuits 45, 189-204 (2010). https://doi.org/ 10.1109/JSSC.2009.2034442 open in new tab
  16. Y. Ramadass, A. Chandrakasan, A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J. Solid-State Circuits 46, 333-341 (2011). https://doi.org/10.1109/JSSC. 2010.2074090 open in new tab
  17. Y.-K. The, P.K.T. Mok, Design of transformer-based boost converter for high internal resistance energy harvesting sources with 21 mV self-startup voltage and 74% power efficiency. IEEE J. Solid-State Circuits 49, 2694-2704 (2014). https://doi.org/10.1109/JSSC.2014.2354645 open in new tab
  18. P.-S. Weng, H.-Y. Tang, P.-C. Ku, L.-H. Lu, 50 mV-input batteryless boost converter for thermal energy harvesting. IEEE J. Solid-State Circuits 48, 1031-1041 (2013). https://doi.org/10.1109/JSSC. 2013.2237998 open in new tab
  19. Y. Yang, X.-J. Wei, J. Liu, Suitability of a thermoelectric power generator for implantable medical electronic devices. J. Phys. D Appl. Phys. 40, 5790-5800 (2007). https://doi.org/10.1088/0022-3727/ 40/18/042 open in new tab
  20. Y. Zhang, F. Zhang, Y. Shakhsheer, J.D. Silver, A. Klinefelter, M. Nagaraju, J. Boley, J. Pandey, A. Shrivastava, E.J. Carlson, A. Wood, B.H. Calhoun, B.P. Otis, A batteryless 19 µW MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE J. Solid-State Circuits 48, 199-213 (2013). https://doi.org/10.1109/JSSC.2012.2221217 open in new tab
Verified by:
Gdańsk University of Technology

seen 119 times

Recommended for you

Meta Tags