Machine-Learning-Powered EM-Based Framework for Efficient and Reliable Design of Low Scattering Metasurfaces - Publication - Bridge of Knowledge

Search

Machine-Learning-Powered EM-Based Framework for Efficient and Reliable Design of Low Scattering Metasurfaces

Abstract

Popularity of metasurfaces has been continuously growing due to their attractive properties including the ability to effectively manipulate electromagnetic (EM) waves. Metasurfaces comprise optimized geometries of unit cells arranged as a periodic lattice to obtain a desired EM response. One of their emerging application areas is the stealth technology, in particular, realization of radar cross section (RCS) reduction. Despite potential benefits, a practical obstacle hindering widespread metasurface utilization is the lack of systematic design procedures. Conventional approaches are largely intuition-inspired and demand heavy designer's interaction while exploring the parameter space and pursuing optimum unit cell geometries. Not surprisingly, these are unable to identify truly optimum solutions. In this article, we introduce a novel machine-learning-based framework for automated and computationally efficient design of metasurfaces realizing broadband RCS reduction. Our methodology is a three-stage procedure that involves global surrogate-assisted optimization of the unit cells, followed by their local refinement. The last stage is direct EM-driven maximization of the RCS reduction bandwidth, facilitated by appropriate formulation of the objective function involving regularization terms. The appealing feature of the proposed framework is that it optimizes the RCS reduction bandwidth directly at the level of the entire metasurface as opposed to merely optimizing unit cell geometries. Computational feasibility of the optimization process, especially its last stage, is ensured by high-quality initial designs rendered during the first two stages. To corroborate the utility of our procedure, it has been applied to several metasurface designs reported in the literature, leading to the RCS reduction bandwidth improvement by 15%-25% when compared with the original designs. Furthermore, it was used to design a novel metasurface featuring over 100% of relative bandwidth. Although the procedure has been used in the context of RCS design, it can be generalized to handle metasurface development for other application areas.

Citations

  • 4 8

    CrossRef

  • 0

    Web of Science

  • 5 0

    Scopus

Cite as

Full text

download paper
downloaded 46 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES no. 69, pages 2028 - 2041,
ISSN: 0018-9480
Language:
English
Publication year:
2021
Bibliographic description:
Kozieł S., Abdullah M.: Machine-Learning-Powered EM-Based Framework for Efficient and Reliable Design of Low Scattering Metasurfaces// IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES -Vol. 69,iss. 4 (2021), s.2028-2041
DOI:
Digital Object Identifier (open in new tab) 10.1109/tmtt.2021.3061128
Verified by:
Gdańsk University of Technology

seen 127 times

Recommended for you

Meta Tags