Municipal wastewater reclamation: Reclaimed water for hydrogen production by electrolysis – A case study - Publication - Bridge of Knowledge

Search

Municipal wastewater reclamation: Reclaimed water for hydrogen production by electrolysis – A case study

Abstract

This paper presents an analysis of a treatment system selection for municipal wastewater stream based on the DuPont Water Solutions WAVE software. The results obtained based on an analysis of 7 different processing cases studies (ultrafiltration and reverse osmosis) confirmed that the application of 2-pass membrane systems enables the reclamation of water from municipal wastewater that fulfills the requirements concerning the quality of water intended as electrolyzer feedstock, as the obtained water exhibited a conductivity of < 5 µS/cm. Depending on the analyzed case study, the attainable level of water reclamation ranged from 68.8 to 84.1 % at an energy consumption of 606.1 – 2 694 kWh/d. The results of this work not only confirm that the selected processing solutions make it possible to reclaim water from municipal wastewater, but also confirm the necessity of using software to simulate the membrane system operation to select the most economic and cost-effective solution.

Citations

  • 6

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Authors (3)

Cite as

Full text

download paper
downloaded 79 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Magazine publication
Type:
Magazine publication
Published in:
MEASUREMENT no. 216, edition 112928,
ISSN: 0263-2241
Publication year:
2023
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.measurement.2023.112928
Bibliography: test
  1. K. Makanda, S. Nzama, T. Kanyerere, Assessing the Role of Water Resources Protection Practice for Sustainable Water Resources Management: A Review, Water 14 (19) (2022) 3153, https://doi.org/10.3390/w14193153. open in new tab
  2. Z. Karimidastenaei, T. Avellán, M. Sadegh, B. Kløve, A.T. Haghighi, Unconventional Water Resources: Global Opportunities and Challenges, Sci. Total Environ. 827 (2022), 154429, https://doi.org/10.1016/j.scitotenv.2022.154429. open in new tab
  3. F.-Z. Lahlou, H.R. Mackey, T. Al-Ansari, Role of Wastewater in Achieving Carbon and Water Neutral Agricultural Production, J. Clean. Prod. 339 (2022), 130706, https://doi.org/10.1016/j.jclepro.2022.130706. open in new tab
  4. X. Wei, K.T. Sanders, A.E. Childress, Reclaiming Wastewater with Increasing Salinity for Potable Water Reuse: Water Recovery and Energy Consumption during Reverse Osmosis Desalination, Desalination 520 (2021), 115316, https://doi.org/ 10.1016/j.desal.2021.115316. open in new tab
  5. L. Gurreri, A. Tamburini, A. Cipollina, G. Micale, Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives, Membranes 10 (7) (2020) 146, https://doi.org/10.3390/membranes10070146. open in new tab
  6. P. Zawadzki, Evaluation of TiO2/UV; O3/UV, and PDS/Vis for Improving Chlorfenvinphos Removal from Real Municipal Treated Wastewater Effluent, Int. J. Environ. Sci. Technol. (2022,) 1-12, https://doi.org/10.1007/s13762-022-04370- x. open in new tab
  7. P. Zawadzki, Elimination of chlorfenvinphos from treated municipal wastewater in advanced oxidation processes, Przemysł Chemiczny T. 100, nr 3 (2021), https:// doi.org/10.15199/62.2021.3.11. open in new tab
  8. Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on Minimum Requirements for Water Reuse (Text with EEA Relevance); 2020; open in new tab
  9. P. Roccaro, Treatment Processes for Municipal Wastewater Reclamation: The Challenges of Emerging Contaminants and Direct Potable Reuse, Curr. Opin. Environ. Sci. Health 2 (2018) 46-54, https://doi.org/10.1016/j. coesh.2018.02.003. open in new tab
  10. G. Gangaraju, K. Balakrishn, R. Uma, K. Shah, Introduction to Conventional Wastewater Treatment Technologies: Limitations and Recent, Advances (2021) 1-36, https://doi.org/10.21741/9781644901144-1. open in new tab
  11. G. Crini, E. Lichtfouse, Advantages and Disadvantages of Techniques Used for Wastewater Treatment, Environ. Chem. Lett. 17 (1) (2019) 145-155, https://doi. org/10.1007/s10311-018-0785-9. open in new tab
  12. Application For Renewal of NPDES CA0107409 and 301(h) Modified Secondary Treatment Requirements, POINT LOMA OCEAN OUTFALL, Volume IV Appendices A & B, 2015. https://www.sandiego.gov/sites/default/files/ploovol4_15.pdf (accessed 2022-12-14). open in new tab
  13. M. Bourgin, B. Beck, M. Boehler, E. Borowska, J. Fleiner, E. Salhi, R. Teichler, U. von Gunten, H. Siegrist, C.S. McArdell, Evaluation of a Full-Scale Wastewater Treatment Plant Upgraded with Ozonation and Biological Post-Treatments: Abatement of Micropollutants, Formation of Transformation Products and Oxidation by-Products, Water Res. 129 (2018) 486-498, https://doi.org/10.1016/ j.watres.2017.10.036. open in new tab
  14. C.S. McArdell, The First Full-Scale Advanced Ozonation Plant in the Dübendorf WWTP Running; the New Swiss Water Protection Act Approved, NORMAN Bulletin (2015) 36-37.
  15. The ripple effects of the energy crisis on academia. https://doi.org/10.15252/ embr.202256287. open in new tab
  16. A. Kiselev, E. Magaril, R. Magaril, D. Panepinto, M. Ravina, M.C. Zanetti, Towards Circular Economy: Evaluation of Sewage Sludge Biogas Solutions, Resources 8 (2) (2019) 91, https://doi.org/10.3390/resources8020091. open in new tab
  17. Making the Breakthrough: Green Hydrogen Policies and Technology Costs. open in new tab
  18. J. Gigler, M. Weeda, R. Hoogma, J. de Boer, Hydrogen for the Energy Transition.
  19. R.W. Howarth, M.Z. Jacobson, How Green Is Blue Hydrogen? Energy Sci. Eng. 9 (10) (2021) 1676-1687, https://doi.org/10.1002/ese3.956. open in new tab
  20. Kędzierski M. Wodór -nadzieja niemieckiej polityki klimatycznej i przemysłowej.
  21. Path-to-Hydrogen-Competitiveness_Full-Study-1.Pdf. https://hydrogencouncil. com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full- Study-1.pdf (accessed 2023-04-05). open in new tab
  22. Hydrogen: A Renewable Energy Perspective. open in new tab
  23. A.M. Lopez-Hidalgo, A. Smoliński, A. Sanchez, A Meta-Analysis of Research Trends on Hydrogen Production via Dark Fermentation, Int. J. Hydrogen Energy 47 (27) (2022) 13300-13339, https://doi.org/10.1016/j.ijhydene.2022.02.106. open in new tab
  24. C.L. Alvarez-Guzmán, S. Cisneros-de la Cueva, V.E. Balderas-Hernández, A. Smoliński, A. De León-Rodríguez, Biohydrogen Production from Cheese Whey Powder by Enterobacter Asburiae: Effect of Operating Conditions on Hydrogen Yield and Chemometric Study of the Fermentative Metabolites, Energy Rep. 6 (2020) 1170-1180, https://doi.org/10.1016/j.egyr.2020.04.038. open in new tab
  25. V.E. Balderas-Hernandez, K.P. Landeros Maldonado, A. Sánchez, A. Smoliński, A. De Leon Rodriguez, Improvement of Hydrogen Production by Metabolic Engineering of Escherichia Coli: Modification on Both the PTS System and Central Carbon Metabolism, Int. J. Hydrogen Energy 45 (9) (2020) 5687-5696, https:// doi.org/10.1016/j.ijhydene.2019.01.162. open in new tab
  26. A. Smoliński, N. Howaniec, A. Bąk, Utilization of Energy Crops and Sewage Sludge in the Process of Co-Gasification for Sustainable Hydrogen Production, Energies 11 (4) (2018) 809, https://doi.org/10.3390/en11040809. open in new tab
  27. O. Grasham, V. Dupont, T. Cockerill, M.A. Camargo-Valero, M.V. Twigg, Hydrogen via Reforming Aqueous Ammonia and Biomethane Co-Products of Wastewater Treatment: Environmental and Economic Sustainability, Sustainable Energy Fuels 4 (11) (2020) 5835-5850, https://doi.org/10.1039/D0SE01335H. open in new tab
  28. S. Rittmann, C. Herwig, A Comprehensive and Quantitative Review of Dark Fermentative Biohydrogen Production, Microb. Cell Fact. 11 (1) (2012) 115, https://doi.org/10.1186/1475-2859-11-115. open in new tab
  29. Y. Liu, R. Lin, Y. Man, J. Ren, Recent Developments of Hydrogen Production from Sewage Sludge by Biological and Thermochemical Process, Int. J. Hydrogen Energy 44 (36) (2019) 19676-19697, https://doi.org/10.1016/j.ijhydene.2019.06.044. open in new tab
  30. A. Domínguez, J.A. Menéndez, J.J. Pis, Hydrogen Rich Fuel Gas Production from the Pyrolysis of Wet Sewage Sludge at High Temperature, J. Anal. Appl. Pyrol. 77 (2) (2006) 127-132, https://doi.org/10.1016/j.jaap.2006.02.003. open in new tab
  31. P. Nikolaidis, A. Poullikkas, A Comparative Overview of Hydrogen Production Processes, Renew. Sustain. Energy Rev. 67 (2017) 597-611, https://doi.org/ 10.1016/j.rser.2016.09.044. open in new tab
  32. E. Koutra, P. Tsafrakidou, M. Sakarika, M. Kornaros, Chapter 11 -Microalgal Biorefinery. In Microalgae Cultivation for Biofuels Production; Yousuf, A., Ed.; Academic Press, 2020; pp 163-185. https://doi.org/10.1016/B978-0-12-817536- 1.00011-4. open in new tab
  33. D. Ucar, Y. Zhang, I. Angelidaki, An Overview of Electron Acceptors in Microbial Fuel Cells, Front. Microbiol. 8 (2017). open in new tab
  34. O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, S. Few, Future Cost and Performance of Water Electrolysis: An Expert Elicitation Study, Int. J. Hydrogen Energy 42 (52) (2017) 30470-30492, https://doi.org/10.1016/j. ijhydene.2017.10.045. open in new tab
  35. S.M. Saba, M. Müller, M. Robinius, D. Stolten, The Investment Costs of Electrolysis -A Comparison of Cost Studies from the Past 30 Years, Int. J. Hydrogen Energy 43 (3) (2018) 1209-1223, https://doi.org/10.1016/j.ijhydene.2017.11.115. open in new tab
  36. G. Bristowe, A. Smallbone, The Key Techno-Economic and Manufacturing Drivers for Reducing the Cost of Power-to-Gas and a Hydrogen-Enabled Energy System, Hydrogen 2 (3) (2021) 273-300, https://doi.org/10.3390/hydrogen2030015. open in new tab
  37. COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS A Hydrogen Strategy for a Climate-Neutral Europe; 2020. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX: 52020DC0301 (accessed 2022-12-09). open in new tab
  38. A. Smoliński, N. Howaniec, Hydrogen Energy, Electrolyzers and Fuel Cells -The Future of Modern Energy Sector, Int. J. Hydrogen Energy 45 (9) (2020) 5607, https://doi.org/10.1016/j.ijhydene.2019.11.076. open in new tab
  39. A. Smoliński, K. Wojtacha-Rychter, M. Król, M. Magdziarczyk, J. Polański, N. Howaniec, Co-Gasification of Refuse-Derived Fuels and Bituminous Coal with Oxygen/Steam Blend to Hydrogen Rich Gas, Energy 254 (2022), 124210, https:// doi.org/10.1016/j.energy.2022.124210. open in new tab
  40. P.J. Megía, A.J. Vizcaíno, J.A. Calles, A. Carrero, Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review, Energy Fuels 35 (20) (2021) 16403-16415, https://doi.org/10.1021/acs. energyfuels.1c02501. open in new tab
  41. R. Pinsky, P. Sabharwall, J. Hartvigsen, J. O'Brien, Comparative Review of Hydrogen Production Technologies for Nuclear Hybrid Energy Systems, Prog. Nucl. Energy 123 (2020), 103317, https://doi.org/10.1016/j.pnucene.2020.103317. open in new tab
  42. K. Zeng, D. Zhang, Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications, Prog. Energy Combust. Sci. 36 (3) (2010) 307-326, https://doi.org/10.1016/j.pecs.2009.11.002. open in new tab
  43. D.S. Falcão, A.M.F.R. Pinto, A Review on PEM Electrolyzer Modelling: Guidelines for Beginners, J. Clean. Prod. 261 (2020), 121184, https://doi.org/10.1016/j. jclepro.2020.121184. open in new tab
  44. M. David, C. Ocampo-Martínez, R. Sánchez-Peña, Advances in Alkaline Water Electrolyzers: A Review, J. Storage Mater. 23 (2019) 392-403, https://doi.org/ 10.1016/j.est.2019.03.001. open in new tab
  45. Staff, G. Hydrogen A to Z Series: P for Purity. Gen H2 Discover Hydrogen. https:// genh2hydrogen.com/hydrogen-a-to-z-series-p-for-purity/ (accessed 2022-12-06).
  46. M. Newborough, Cooley, G. Green Hydrogen: Water Use Implications and Opportunities. Fuel Cells Bulletin 2021, 4. open in new tab
  47. S.G. Simoes, J. Catarino, A. Picado, T.F. Lopes, S. di Berardino, F. Amorim, F. Gírio, C.M. Rangel, T. Ponce de Leão, Water Availability and Water Usage Solutions for Electrolysis in Hydrogen Production, J. Clean. Prod. 315 (2021), 128124, https:// doi.org/10.1016/j.jclepro.2021.128124. open in new tab
  48. M. Ball, M. Weeda, 11 -The Hydrogen Economy-Vision or Reality? In Compendium of Hydrogen Energy; Ball, M., Basile, A., Veziroglu, T. N., Eds.; Woodhead Publishing Series in Energy; Woodhead Publishing: Oxford, 2016; pp 237-266. https://doi.org/10.1016/B978-1-78242-364-5.00011-7. open in new tab
  49. M. Ni, D.Y.C. Leung, M.K.H. Leung, K. Sumathy, An Overview of Hydrogen Production from Biomass, Fuel Process. Technol. 87 (5) (2006) 461-472, https:// doi.org/10.1016/j.fuproc.2005.11.003. open in new tab
  50. E. Gasafi, M.-Y. Reinecke, A. Kruse, L. Schebek, Economic Analysis of Sewage Sludge Gasification in Supercritical Water for Hydrogen Production, Biomass Bioenergy 32 (12) (2008) 1085-1096, https://doi.org/10.1016/j. biombioe.2008.02.021. open in new tab
  51. L.R. Winter, N.J. Cooper, B. Lee, S.K. Patel, L. Wang, M. Elimelech, Mining Nontraditional Water Sources for a Distributed Hydrogen Economy, Environ. Sci. Tech. 56 (15) (2022) 10577, https://doi.org/10.1021/acs.est.2c02439. open in new tab
  52. ISO 5667-3:2018 Water quality -Sampling -Part 3: Preservation and handling of water samples. ISO. https://www.iso.org/standard/72370.html (accessed 2022-12- 08). open in new tab
  53. ISO 5667-10:2020 Water quality -Sampling -Part 10: Guidance on sampling of waste water. ISO. https://www.iso.org/standard/70934.html (accessed 2022-12- 08). open in new tab
  54. Standard Specification for Reagent Water. https://www.astm.org/d1193-06r18.html (accessed 2022-12-06). open in new tab
  55. Mixed bed ion exchange demineralisation plants-Lenntech. https://www.lenntech. com/applications/ultrapure/mixed/mixed-bed-plants.htm (accessed 2022-12-08). open in new tab
  56. E. Obotey Ezugbe, S. Rathilal, Membrane Technologies in Wastewater Treatment: A Review, Membranes 10 (5) (2020) 89, https://doi.org/10.3390/ membranes10050089. open in new tab
  57. K.N. Bourgeous, J.L. Darby, G. Tchobanoglous, Ultrafiltration of Wastewater: Effects of Particles, Mode of Operation, and Backwash Effectiveness, Water Res 35 (1) (2001) 77-90, https://doi.org/10.1016/s0043-1354(00)00225-6. open in new tab
  58. D. Falsanisi, L. Liberti, M. Notarnicola, Ultrafiltration (UF) Pilot Plant for Municipal Wastewater Reuse in Agriculture: Impact of the Operation Mode on Process Performance, Water 2 (4) (2010) 872-885, https://doi.org/10.3390/ w2040872. open in new tab
  59. E. Obotey Ezugbe, S. Rathilal, Membrane Technologies in Wastewater Treatment: A Review, Membranes 10 (5) (2020) 89, https://doi.org/10.3390/ membranes10050089. open in new tab
  60. P. Moradihamedani, Recent Advances in Dye Removal from Wastewater by Membrane Technology: A Review, Polym. Bull. 79 (4) (2022) 2603-2631, https:// doi.org/10.1007/s00289-021-03603-2. open in new tab
  61. D. Escarabajal-Henarejos, D. Parras-Burgos, L. Á vila-Dávila, F.J. Cánovas- Rodríguez, J.M. Molina-Martínez, Study of the Influence of Temperature on Boron Concentration Estimation in Desalinated Seawater for Agricultural Irrigation, Water 13 (3) (2021) 322, https://doi.org/10.3390/w13030322. open in new tab
  62. Dupont. WAVE (Water Application Value Engine). Wave Software For Water Treatment Plant Design. https://www.dupont.com/Wave/Default.htm (accessed 2022-12-13).
  63. H. Xu, K. Xiao, J. Yu, B. Huang, X. Wang, S. Liang, C. Wei, X. Wen, X. Huang, A Simple Method to Identify the Dominant Fouling Mechanisms during Membrane Filtration Based on Piecewise Multiple Linear Regression, Membranes (Basel) 10 (8) (2020) 171, https://doi.org/10.3390/membranes10080171. open in new tab
  64. J. Zhou, N. Gao, G. Peng, Y. Deng, Pilot Study of Ultrafiltration-Nanofiltration Process for the Treatment of Raw Water from Huangpu River in China, J. Water Resour. Prot. 1 (3) (2009) 203-209, https://doi.org/10.4236/jwarp.2009.13025. open in new tab
  65. DOW FILMTEC SFP-2880 Ultrafiltration Modules. Pure Aqua. Inc. https://pureaqua. com/dow-filmtec-sfp-2880-ultrafiltration-modules/ (accessed 2023-04-06). open in new tab
  66. Filmtec Membranes SW30XLE-400i (219219). https://www.lenntech.pl/produkty/ Filmtec-Membranes/219219/SW30XLE-400i/index.html (accessed 2023-04-06). open in new tab
  67. I.G. Wenten, MEMBRANE IN WATER AND WASTEWATER TREATMENT; 2008.
  68. electrical conductivity: Water Dictionary: Water Information: Bureau of Meteorology. http://www.bom.gov.au/water/awid/id-867.shtml (accessed 2023-04-06). open in new tab
  69. Conductivity | Monitoring & Assessment | US EPA. https://archive.epa.gov/ water/archive/web/html/vms59.html (accessed 2023-04-06). open in new tab
  70. Application Of Deionized Water In Hydrogen Production Equipment -News. Cockerill Jingli Hydrogen. https://www.jinglihydrogen.com/news/application-of- deionized-water-in-hydrogen-pro-32479464.html (accessed 2023-04-06). open in new tab
  71. Deionised Water: it's purity and production process | ELGA LabWater. https://www. elgalabwater.com/blog/deionisation-of-water (accessed 2023-04-06). open in new tab
  72. Analysis of Hydrogen Production in Alkaline Electrolyzers | Journal of Power Technologies. https://papers.itc.pw.edu.pl/index.php/JPT/article/view/888 (accessed 2023-04-06). open in new tab
  73. Matošec, M. Water treatment for green hydrogen: what you need to know. Hydrogen Tech World.com. https://hydrogentechworld.com/water-treatment-for-green- hydrogen-what-you-need-to-know (accessed 2023-04-06).
  74. Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5C Climate Goal. open in new tab
  75. Intech | Hydrogen Technology | Products | Hydrogen Generators. http://www.intech. eu/en/hydrogen-technology/products/hydrogen-generators (accessed 2023-04- 06). open in new tab
  76. A. Deshmukh, C. Boo, V. Karanikola, S. Lin, A.P. Straub, T. Tong, D.M. Warsinger, M. Elimelech, Membrane Distillation at the Water-Energy Nexus: Limits, Opportunities, and Challenges, Energy Environ. Sci. 11 (5) (2018) 1177-1196, https://doi.org/10.1039/C8EE00291F. open in new tab
  77. F. Macedonio, E. Curcio, E. Drioli, Integrated Membrane Systems for Seawater Desalination: Energetic and Exergetic Analysis, Economic Evaluation, Experimental Study. Desalination 203 (1) (2007) 260-276, https://doi.org/ 10.1016/j.desal.2006.02.021. open in new tab
  78. Y. Ghalavand, M.S. Hatamipour, A. Rahimi, A Review on Energy Consumption of Desalination Processes, Desalin. Water Treat. 54 (6) (2015) 1526-1541, https:// doi.org/10.1080/19443994.2014.892837. open in new tab
  79. The University of Oklahoma. Capital investments and operational costs. https://www. ou.edu/class/che-design/design1/cost-est.htm (accessed 2022-12-13). open in new tab
  80. M.R. Shabani, R.B. Yekta, Suitable Method for Capital Cost Estimation in Chemical Processes Industries, Cost Engineering (Morgantown, West Virginia) 48 (2006) 22-25. open in new tab
  81. Max. S. Peters, K. D. Timmerhaus, Plant Design and Economics for Chemical Engineers, fourth edition.; McGraw-Hill Book Co: Singapore, 2003.
Verified by:
No verification

seen 46 times

Recommended for you

Meta Tags