On Computational Aspects of Greedy Partitioning of Graphs - Publication - Bridge of Knowledge

Search

On Computational Aspects of Greedy Partitioning of Graphs

Abstract

In this paper we consider a problem of graph P-coloring consisting in partitioning the vertex set of a graph such that each of the resulting sets induces a graph in a given additive, hereditary class of graphs P. We focus on partitions generated by the greedy algorithm. In particular, we show that given a graph G and an integer k deciding if the greedy algorithm outputs a P-coloring with a least k colors is NP-complete for an infinite number of classes P. On the other hand we get a polynomial-time certifying algorithm if k is fixed and the family of minimal forbidden graphs defining the class P is finite. We also prove coNP-completeness of the problem of deciding whether for a given graph G the difference between the largest number of colors used by the greedy algorithm and the minimum number of colors required in any P-coloring of G is bounded by a given constant. A new Brooks-type bound on the largest number of colors used by the greedy P-coloring algorithm is given.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Conference activity
Type:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Title of issue:
Frontiers in Algorithmics strony 34 - 46
Language:
English
Publication year:
2017
Bibliographic description:
Borowiecki P.: On Computational Aspects of Greedy Partitioning of Graphs// Frontiers in Algorithmics/ : , 2017, s.34-46
DOI:
Digital Object Identifier (open in new tab) 10.1007/978-3-319-59605-1_4
Verified by:
Gdańsk University of Technology

seen 169 times

Recommended for you

Meta Tags