Abstract
In the framework of the strain gradient surface elasticity we discuss a consistent form of surface kinetic energy. This kinetic constitutive equation completes the statement of initial–boundary value problems. The proposed surface kinetic energy density is the most general function consistent with the constitutive relations in bulk. As the surface strain energy depends on the surface deformation gradient and its gradient, the kinetic energy is a quadratic function of the velocity and its surface gradient.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (2)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Monographic publication
- Type:
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Title of issue:
- Nonlinear Wave Dynamics of Materials and Structures strony 145 - 152
- Language:
- English
- Publication year:
- 2020
- Bibliographic description:
- Eremeev V., Lebedev L.: On Surface Kinetic Constitutive Relations// Nonlinear Wave Dynamics of Materials and Structures/ Cham: Springer, 2020, s.145-152
- DOI:
- Digital Object Identifier (open in new tab) 10.1007/978-3-030-38708-2_9
- Verified by:
- Gdańsk University of Technology
seen 104 times
Recommended for you
On weak solutions of boundary value problems within the surface elasticity of Nth order
- V. Eremeev,
- L. Lebedev,
- M. Cloud
2021