Oxygen Aspects in the High-Pressure and High-Temperature Sintering of Semiconductor Kesterite Cu2ZnSnS4 Nanopowders Prepared by a Mechanochemically-Assisted Synthesis Method - Publication - Bridge of Knowledge

Search

Oxygen Aspects in the High-Pressure and High-Temperature Sintering of Semiconductor Kesterite Cu2ZnSnS4 Nanopowders Prepared by a Mechanochemically-Assisted Synthesis Method

Abstract

Citations

  • 2

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Authors (5)

Cite as

Full text

download paper
downloaded 21 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Details

Category:
Magazine publication
Type:
Magazine publication
Published in:
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES no. 24,
ISSN: 1661-6596
Publication year:
2023
DOI:
Digital Object Identifier (open in new tab) 10.3390/ijms24043159
Bibliography: test
  1. Delbos, S. Kësterite thin films for photovoltaics: A review. EPJ Photovoltaics 2012, 3, 35004. https://doi.org/10.1051/epjpv/2012008. open in new tab
  2. Wallace, S.K.; Mitzi, D.B.; Walsh, A. The Steady Rise of Kesterite Solar Cells. ACS Energy Lett. 2017, 2, 776-779. https://doi.org/10.1021/acsenergylett.7b00131. open in new tab
  3. Nazligul, A.S.; Wang, M.Q.; Choy, K.L. Recent Development in Earth-Abundant Kesterite Materials and Their Applications. Sustainability 2020, 12, 5138. https://doi.org/10.3390/su12125138. open in new tab
  4. Hamdaoui, J.E.; Kria, M.; Lakaal, K.; El-Yadri, M.; Feddi, E.M.; Rejas, L.P.; Pérez, L.M.; Díaz, P.; Mora-Ramos, M.E.; Laroze, D. Ab initio study of carrier mobility, thermodynamic and thermoelectric properties of kesterite Cu2ZnGeS4. Int. J. Mol. Sci. 2022, 23, 12785. open in new tab
  5. Liu, R. Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells. Materials 2014, 7, 2747-2771. https://doi.org/10.3390/ma7042747. open in new tab
  6. Singh, O.P.; Gour, K.S.; Parmar, R.; Singh, V.N. Reactive Sputtering Technique for Kesterite and Chalcogenide Based Thin Film Solar Cells. J. Nanosci. Nanotechnol. 2018, 18, 7670-7681. https://doi.org/10.1166/jnn.2018.16089. open in new tab
  7. Baláž, P.; Achimovičová, M.; Baláž, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J.M.; Delogu, F.; Dutková, E.; Gaffet, E.; Gotor, F.J.; et al. Hallmarks of mechanochemistry: From nanoparticles to technology. Chem. Soc. Rev. 2013, 42, 7571-7637. https://doi.org/10.1039/c3cs35468g. open in new tab
  8. Kapusta, K.; Drygas, M.; Janik, J.F.; Jelen, P.; Bucko, M.M.; Olejniczak, Z. From magnetic cubic pre-kesterite to semiconducting tetragonal kesterite Cu2ZnSnS4 nanopowders via the mechano-chemically assisted route. J. Alloy. Compd. 2019, 770, 981. open in new tab
  9. Sahu, M.; Reddy, V.R.M.; Kim, B.; Patro, B.; Park, C.; Kim, W.K.; Sharma, P. Fabrication of Cu2ZnSnS4 light absorber using a cost-effective mechanochemical method for photovoltaic applications. Materials 2022, 15, 1708. open in new tab
  10. Dun, C.C.; Holzwarth, N.A.W.; Li, Y.; Huang, W.X.; Carroll, D.L. Cu2ZnSnSxO4-x and Cu2ZnSnSxSe4-x: First principles simula- tions of optimal alloy configurations and their energies. J. Appl. Phys. 2014, 115, 193513. open in new tab
  11. Tablero, C. Effect of the oxygen isoelectronic substitution in Cu2ZnSnS4 and its photovoltaic application. Thin Solid Film. 2012, 520, 5011. open in new tab
  12. Yu, R.S.; Hung, T.C. Influences of oxygen incorporation on the structural and optoelectronic properties of Cu2ZnSnS4 thin films. Appl. Surf. Sci. 2016, 364, 909. open in new tab
  13. Washio, T.; Shinji, T.; Tajima, S.; Fukano, T.; Motohiro, T.; Jimbo, K.; Katagiri, H. 6% efficiency Cu2ZnSnS4-based thin film solar cells using oxide precursors by open atmosphere type CVD. J. Mater. Chem. 2012, 22, 4021. open in new tab
  14. Larsen, J.K.; Ren, Y.; Ross, N.; Sarhammer, E.; Li, S.Y.; Platzer-Bjorkman, C. Surface modification through air annealing Cu2ZnSn(S,Se)4 absorbers. Thin Solid Film. 2017, 633, 118. open in new tab
  15. Tajima, S.; Asahi, R.; Isheim, D.; Seidman, D.N.; Itoh, T.; Hasegawa, M.; Ohishi, K. Atom-probe tomographic study of interfaces of Cu2ZnSnS4 photovoltaic cells. Appl. Phys. Lett. 2014, 105, 093901. open in new tab
  16. Hegedus, M.; Balaz, P.; Balaz, M.; Siffalovic, P.; Daneu, N.; Kanuchova, M.; Briancin, J.; Fa-bian, M. Mechanochemical approach to a Cu2ZnSnS4 solar cell absorber via a "micro-nano" route. J. Mater. Sci. 2018, 53, 13617. open in new tab
  17. Havryliuk, Y.; Valakh, M.Y.; Dzhagan, V.; Greshchuk, O.; Yukhymchuk, V.; Raevskaya, A.; Stroyuk, O.; Selyshchev, O.; Gaponik, N.; Zahn, D.R.T. Raman characterization of Cu2ZnSnS4 nanocrystals: Phonon confinement effect and formation of CuxS phases. RSC Adv. 2018, 8, 30736. open in new tab
  18. Nguyen, V.T.; Nam, D.; Gansukh, M.; Park, S.-N.; Sung, S.-J.; Kim, D.-H.; Kang, J.-K.; Sai, C.D.; Tran, T.H.; Cheong, H. Influence of sulfate residue on Cu2ZnSnS4 thin films prepared by direct solution method. Sol. Energy Mater. Sol. Cells 2015, 136, 113-119. https://doi.org/10.1016/j.solmat.2015.01.003. open in new tab
  19. Awadallah, O.; Cheng, Z. In situ Raman monitoring of Cu2ZnSnS4 oxidation and related decomposition at elevated temperature. IEEE J. Photovolt. 2016, 6, 764. open in new tab
  20. Lejda, K.; Drygaś, M.; Janik, J.F.; Szczytko, J.; Twardowski, A.; Olejniczak, Z. Magnetism of Kesterite Cu2ZnSnS4 Semiconductor Nanopowders Prepared by Mechanochemically Assisted Synthesis Method. Materials 2020, 13, 3487. https://doi.org/10.3390/ma13163487. open in new tab
  21. Wibowo, R.A. Powder-to-film approach for fabricating critical raw material-free kesterite Cu2ZnSn(S,Se)4 thin film photovoltaic: A review. Sol. Energy 2018, 176, 157. open in new tab
  22. Cao, V.M.H.; Bae, J.; Shim, J.; Hong, B.; Jee, H.; Lee, J. Fabrication of the Cu2ZnSnS4 thin film solar cell via a photo-sintering technique. Appl. Sci. 2022, 12, 38. open in new tab
  23. Isotta, E.; Mukherjee, B.; Fanciulli, C.; Pugno, N.M.; Scardi, P. Order-disorder transition in kesterite Cu2ZnSnS4: Thermopower enhancement via electronic band structure modification. J. Phys. Chem. C 2020, 124, 7091. open in new tab
  24. Matizamhuka, W. In Sintering of Functional Materials; open in new tab
  25. Igor, V. Ed.; Shishkovsky, Intechopen, 2018. Chapter 8-High-Pressure High-Temperature (HPHT) Synthesis of Functional Materials. Available online: https://www.intechopen.com/chapters/58807 (accessed on January 3, 2023).
  26. He, J.; Sun, L.; Zhang, K.; Wang, W.; Jiang, J.; Chen, Y.; Yang, P.; Chu, J. Effect of post-sulfurization on the composition, structure and optical properties of Cu2ZnSnS4 thin films deposited by sputtering from a single quaternary target. Appl. Surf. Sci. 2013, 264, 133-138. https://doi.org/10.1016/j.apsusc.2012.09.140. open in new tab
  27. Drygas, M.; Kapusta, K.; Janik, J.F.; Bucko, M.M.; Gierlotka, S.; Stelmakh, S.; Palosz, B.; Olejniczak, Z. Novel nanoceramics from in situ made nanocrystalline powders of pure nitrides and their composites in the system aluminum nitride AlN/gallium nitride GaN/aluminum gal-lium nitride Al0.5Ga0.5N. J. Eur. Ceram. Soc. 2020, 40, 5339. open in new tab
  28. Drygaś, M.; Lejda, K.; Janik, J.F.; Musielak, B.; Gierlotka, S.; Stelmakh, S.; Pałosz, B. Compo-site nitride nanoceramics in the system titanium nitride (TiN)-aluminum nitride (AlN) through high pressure and high temperature sintering of synthesis- mixed nanocrystalline powders. Materials 2021, 14, 588. open in new tab
  29. Drygas, M.; Lejda, K.; Janik, J.F.; Stelmakh, S.; Palosz, B. Novel composite nitride nanoceramics from reaction-mixed nanocrys- talline powders in the system aluminum nitride AlN/gallium nitride GaN/titanium nitride TiN (Al:Ga:Ti = 1:1:1). Materials 2022, 15, 2200. open in new tab
  30. Dimitrievska, M.; Boero, F.; Litvinchuk, A.P.; Delsante, S.; Borzone, G.; Perez-Rodriguez, A.; Izquierdo-Roca, V. Structural pol- ymorphism in "kesterite" Cu2ZnSnS4: Raman spectroscopy and first-principles calculations analysis. Inorg. Chem. 2017, 56, 3467. open in new tab
  31. Gamo, I. Infrared Absorption Spectra of Water of Crystallization in Copper Sulfate Penta-and Monohydrate Crystals. Bull. Chem. Soc. Jpn. 1961, 34, 764-766. https://doi.org/10.1246/bcsj.34.764. open in new tab
  32. Saha, J.K.; Podder, J. Crystallization of Zinc Sulphate Single Crystals and Its Structural, Thermal and Optical Characterization. J. Bangladesh Acad. Sci. 2011, 35, 203-210. https://doi.org/10.3329/jbas.v35i2.9426. open in new tab
  33. Kapusta, K.; Drygas, M.; Janik, J.F.; Olejniczak, Z. New synthesis route to kesterite Cu2ZnSnS4 semiconductor nanocrystalline powders utilizing copper alloys and a high energy ball milling-assisted process. J. Mater. Res. Technol. 2020, 9, 13320-13331. https://doi.org/10.1016/j.jmrt.2020.09.062. open in new tab
  34. Choubrac, L.; Paris, M.; Lafond, A.; Guillot-Deudon, C.; Rocquefelte, X.; Jobic, S. Multinuclear ( 67 Zn, 119 Sn and 65 Cu) NMR spec- troscopy-An ideal technique to probe the cationic ordering in Cu2ZnSnS4 photovoltaic materials. Phys. Chem. Chem. Phys. 2013, 15, 10722. open in new tab
  35. WWW-MINCRYST, Crystallographic and Crystallochemical Database for Minerals and Their Structural Analogues, 2018. Avail- able online: http://database.iem.ac.ru/mincryst (accessed on January 3, 2023).
  36. Kurban, G.V.T.; Rego, A.S.C.; Mello, N.M.; Brocchi, E.A.; Navarro, R.C.S.; Souza, R.F.M. Thermodynamics and kinetic modeling of the ZnSO4·H2O thermal decomposition in the presence of a Pd/Al2O3 catalyst. Energies 2022, 15, 548. open in new tab
  37. Mettler-Toledo, Thermal Analysis Applications. Thermal decomposition of copper sulfate pentahydrate. Available online: https://www.mt.com/fr/fr/home/supportive_content/matchar_apps/MatChar_UC156.html (accessed on January 3, 2023).
  38. Boutahar, L.; Benamrani, A.; Er, Z.; Bioud, N.; Rouabah, Z. Elastic constants of tetragonal Cu2ZnSnS4 semiconductor: Ab-initio calculation. Ann. West Univ. Timis. -Phys. 2022, 64, 55. open in new tab
  39. Efthimiopoulos, I.; Küllmey, T.; Speziale, S.; Pakhomova, A.S.; Quennet, M.; Paulus, B.; Ritscher, A.; Lerch, M. High-pressure behavior of disordered kesterite-type Cu2ZnSnS4. Appl. Phys. A 2021, 127, 616. https://doi.org/10.1007/s00339-021-04745-w. open in new tab
  40. Schorr, S.; Gonzalez-Aviles, G. In-situ investigation of the structural phase transition in kesterite. Phys. Status Solidi (a) 2009, 206, 1054-1058. https://doi.org/10.1002/pssa.200881214. open in new tab
  41. Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual au- thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Verified by:
No verification

seen 36 times

Meta Tags