Abstract
In this paper we prove the existence of mountain pass periodic solutions of a certain class of generalized Lagrangian systems under small perturbations. We show that the found periodic solutions converge to a periodic solution of the unperturbed system if the perturbation tends to 0. The proof requires to work in a rather unusual (mixed) Orlicz–Sobolev space setting, which bears several challenges.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (3)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach dostępnych w wersji elektronicznej [także online]
- Published in:
-
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS
ISSN: 0219-1997 - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Izydorek M., Janczewska J., Waterstraat N., Periodic solutions of Lagrangian systems under small perturbations, COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024,10.1142/S0219199724500317
- DOI:
- Digital Object Identifier (open in new tab) 10.1142/s0219199724500317
- Sources of funding:
-
- IDUB
- Verified by:
- Gdańsk University of Technology
seen 36 times