Removal of the membrane penetration error from triaxial data - Publication - Bridge of Knowledge

Search

Removal of the membrane penetration error from triaxial data

Abstract

Citations

Authors (2)

Cite as

Full text

download paper
downloaded 15 times
Publication version
Submitted Version
License
Creative Commons: CC-BY-NC open in new tab

Details

Category:
Magazine publication
Type:
Magazine publication
Publication year:
2020
DOI:
Digital Object Identifier (open in new tab) https://opengeomechanics.centre-mersenne.org/
Bibliography: test
  1. Ansal, A. and Erken, A. (1996). Post correction procedure for membrane compliance effects on pore pressure. Journal (12) They correspond to diameters 2r = 5, 10 and 15 cm open in new tab
  2. Open Geomechanics, 0000, article no. 0 open in new tab
  3. Andrzej Niemunis & Lukas Knittel, Removal of the membrane penetration error from triaxial data of Geotechnical Engineering, 122(1):27-38. https://doi. org/10.1061/(ASCE)0733-9410(1996)122:1(27). open in new tab
  4. Baldi, G. and Nova, R. (1984). Membrane penetration ef- fects in triaxial testing. Journal of Geotechnical Engi- neering, 110(3):403-420. https://doi.org/10.1061/ (ASCE)0733-9410(1984)110:3(403). open in new tab
  5. Bauer, E. (1992). Zum mechanischen Verhalten granularer Stoffe unter vorwiegend ödometrischer Beanspruchung. PhD thesis, Institut für Boden-und Felsmechanik der Uni- versität Karlsruhe. Heft Nr 130.
  6. Frydman, S., Zeitlen, J., and Alpan, I. (1973). The membrane effect in triaxial testing on granular soils. Journal of Testing and Evaluation, 1:37-41. https://doi.org/10.1520/ JTE11599J. open in new tab
  7. Gudehus, G. (1979). Comparison of some constitutive laws for soils under radially symmetric loading and unloading. In Numerical Methods in Geomechanics, pages 1309-1323.
  8. Balkema, Rotterdam. 3-rd International Conference in Aachen.
  9. Haeri, S. and Shakeri, M. (2010). Effects of membrane compliance on pore water pressure generation in gravelly sands under cyclic loading. Geotechnical Testing Journal, 33(5):1-10. https://doi.org/10.1520/GTJ102433. open in new tab
  10. Kiekbusch, M. and Schuppener, B. (1977). Membrane penetration and its effects on pore pressure. Jour- nal of the Geotechnical Engineering Division, ASCE, 103(GT11):1267-1279. open in new tab
  11. Knittel, L., Wichtmann, T., Niemunis, A., Huber, G., Es- pino, E., and Triantafyllidis, T. (2020). Pure elastic stiff- ness of sand represented by response envelopes de- rived from cyclic triaxial tests with local strain measure- ments. Acta Geotechnica. https://doi.org/10.1007/ s11440-019-00893-9. open in new tab
  12. Lee, K. and Fitton, J. (1969). Factors affecting the cyclic load- ing strength of soil. In Vibration Effects of Earthqakes on Soils and Foundations, ASTM Special Technical Publica- tion 450, pages 71-95. open in new tab
  13. Newland, P. and Alley, B. (1957). Volume changes during drained triaxial tests on granular materials. Geotechnique, 7:17-34. https://doi.org/10.1680/geot.1957.7.1. open in new tab
  14. Nicholson, P. G., Seed, R. B., and Anwar, H. A. (1993). Elim- ination of membrane compliance in undrained triax- ial testing. 1. measurement and evaluation. Canadian Geotechnical Journal, 30:727-738. https://doi.org/ 10.1139/t93-065. open in new tab
  15. Osinov, V., Chrispoulos, S., and Grandas-Tavera, C. (2016). Vibration-Induced Stress Changes in Saturated Soil: A High Cyclic Problem. In Triantafyllidis, T., editor, Holis- tic simulation of geotechnical installation processes. Nu- merical and physical modelling., pages 69-84. Springer. https://doi.org/10.1007/978-3-319-18170-7. open in new tab
  16. Raju, V. and Sadasivian, S. (1974). Membrane penetration in triaxial tests on sand. Journal of the Geotechnical Engi- neering Division, ASCE, 100(GT4):482-489. open in new tab
  17. Raju, V. and Venkatramana, K. (1980). Undrained triaxial tests to assess liquefaction potential of sands -effects of membrane penetration. In Proc. of the International Sym- posium on Soils under Cyclic Transient Loading, Rotter- dam, volume 2, pages 483-494.
  18. Ramana, K. and Raju, V. (1982). Membrane penetra- tion in triaxial tests. Journal of Geotechnical Engi- neering, 108(2):305-310. https://doi.org/10.1061/ (ASCE)0733-9410(1983)109:2(277). open in new tab
  19. Roscoe, K. H., Schofield, A., and Thurairaja, A. (1963). An evaluation of test data for selecting a yield criterion for soil. In Proceedings of Laboratory Shear Testing of Soils, Special Technical Publication, volume 361, pages 111-128. open in new tab
  20. https://doi.org/10.1520/STP29988S. open in new tab
  21. Rowe, P. (1962). The stress-dilatancy relation for static equi- librium of an assembly of particles in contact. Proceed- ings of the Royal Society of London, 269:500-527. https: //doi.org/10.1098/rspa.1962.0193. open in new tab
  22. Seed, R., Anwar, H., and Nicholson, P. (1989). Evaluation and mitigation of membrane compliance effects in undrained testing of saturated soils. Technical Report Technical re- port, SU/GT/89-01, Stanford University.
  23. Skempton, A. (1954). The pore pressure coefficients A and B. Géotechnique, 4(4):143-147. https://doi.org/10. 1680/geot.1954.4.4.143. open in new tab
  24. Taylor, D. (1948). Fundamentals of Soil Mechanics. John Wi- ley and Sons, New York. open in new tab
  25. Tokimatsu, K. (1990). System compliance correction from pore pressure response in undrained triaxial tests. Soils and Foundations, 30(2):14-22. open in new tab
  26. Tokimatsu, K. and Nakamura, K. (1986). A liquefaction test without membrane penetration effects. Soils and Foun- dations, 26(4):127-138. open in new tab
  27. https://doi.org/10.3208/ sandf1972.26.4_127. open in new tab
  28. Towhata, I. (2008). Geotechnical Earthquake Engineering. Springer. open in new tab
  29. Vaid, Y., Fisher, J., Kuerbis, R., and Negussey, D. (1990). Par- ticle gradation and liquefaction. Journal of Geotechnical Engineering, 116(4):698-703. open in new tab
  30. Vaid, Y. and Negussey, D. (1984). Relative density of pluvi- ated sand samples. Soils and Foundations, 24(2):101-105. open in new tab
  31. https://doi.org/10.3208/sandf1972.24.2_101. open in new tab
  32. Wichtmann, T. (2005). Explicit accumulation model for non- cohesive soils under cyclic loading. PhD thesis, Ruhr- University Bochum, Heft 38.
  33. Wichtmann, T., Steller, K., Triantafyllidis, T., Back, M., and Dahmen, D. (2019). An experimental parametric study on the liquefaction resistance of sands in spreader dumps of lignite opencast mines. Soil Dynamics and Earthquake Engineering, 122:290-309. https://doi.org/10.1016/ j.soildyn.2018.11.010. open in new tab
  34. Wolffersdorff, P.-A. v. (1996). A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-Frictional Materi- als, 1:251-271. open in new tab
  35. https://doi.org/10.1002/(SICI) 1099-1484(199607)1:3<251::AID-CFM13>3 open in new tab
  36. Open Geomechanics, 0000, article no. 0 open in new tab
  37. Andrzej Niemunis & Lukas Knittel, Removal of the membrane penetration error from triaxial data open in new tab
Verified by:
No verification

seen 9 times

Meta Tags