Snapshot of micro-animals and associated biotic and abiotic environmental variables on the edge of the south-west Greenland ice sheet - Publication - Bridge of Knowledge

Search

Snapshot of micro-animals and associated biotic and abiotic environmental variables on the edge of the south-west Greenland ice sheet

Abstract

Microinvertebrates play a role as top consumers on glaciers. In this study we tested what kind of cryoconite material the animals inhabit (mud vs granules) on the edge of the Greenland ice sheet (GrIS) in the south-west. We also tested the links between the densities of micro-fauna in cryoconite material and selected biotic (algae, cyanobacteria, bacterial abundances) and abiotic (water depth, pH, ion content, radionuclides) factors. We collected 33 cryoconite samples. Tardigrada and Rotifera were found in 18 and 61% of samples, respectively. Invertebrates in this study were considerably less frequent and less abundant in comparison with High Arctic glaciers. The highest density of tardigrades and rotifers constituted 53 and 118 ind./ml, respectively. Generalized linear models showed no relationship between the densities of fauna and biotic and abiotic factors. The densities of animals were significantly higher in granules than in mud. The difference in the densities of animals between granules and mud reflects a simple mechanistic removal of invertebrates from the sediment during its erosion by flushing which leads to mud formation. These processes may influence a random distribution of micro-fauna without clear ecological interactions with biotic and abiotic variables at the edge of the GrIS.

Citations

  • 2 5

    CrossRef

  • 0

    Web of Science

  • 2 7

    Scopus

Authors (2)

Cite as

Full text

download paper
downloaded 16 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
LIMNOLOGY no. 19, edition 1, pages 141 - 150,
ISSN: 1439-8621
Language:
English
Publication year:
2018
Bibliographic description:
Zawierucha K., Lehmann-Konera S.: Snapshot of micro-animals and associated biotic and abiotic environmental variables on the edge of the south-west Greenland ice sheet// LIMNOLOGY. -Vol. 19, iss. 1 (2018), s.141-150
DOI:
Digital Object Identifier (open in new tab) 10.1007/s10201-017-0528-9
Bibliography: test
  1. Altiero T, Rebecchi L (2001) Rearing tardigrades: results and problems. Zool Anzg 240:217-221 open in new tab
  2. Anesio AM, Laybourn-Parry J (2012) Glaciers and ice sheets as a biome. TrEE 4:219-225 open in new tab
  3. Arnold TW (2010) Uninformative parameters and model selection using Akaike's information criterion. J Wildl 74:1175-1178 AMAP assessment (2015) Radioactivity in the Arctic. Arctic monitoring and assessment programme (AMAP), Oslo, Norway Bartoń K (2016) MuMIn: multi-model inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn open in new tab
  4. Beier S, Traunspurger W (2003) Temporal dynamics of meiofauna communities in two small submountain carbonate streams with different grain size. Hydrobiol 498:107-131 open in new tab
  5. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. 2nd edn. Springer, New York Cameron AK, Stibal M, Hawkings JR, Mikkelsen AB, Telling J, Kohler TJ, Gözdereliler E, Zarsky JD, Wadham JL, Jacobsen CS (2016) Meltwater export of prokaryotic cells from the Greenland ice sheet. Environ Microbial. doi:10.1111/1462-2920.13483 open in new tab
  6. Coesel PFM, Meesters J (2007) Desmids of the lowlands. Mesotae- niaceae and Desmidiaceae of the European Lowlands. KNNV Publishing, The Netherlands., p 351 open in new tab
  7. Cook JM, Edwards A, Hubbard A (2015a) Biocryomorphology: integrating microbial processes with ice surface hydrology, topography, and roughness. Front Earth Sci 3:78 open in new tab
  8. Cook JM, Edwards A, Takeuchi N, Irvine-Fynn T (2015b) Cry- oconite. The dark biological secret of the cryosphere. Prog Phys Geogr 40:1-46 open in new tab
  9. Cook JM, Edwards A, Bulling M, Mur LAJ, Cook S, Gokul JK, Cameron KA, Sweet M, Irvine-Fynn TDL (2016) Metabolome-mediated biocryomorphic evolution promotes carbon fixation in Greenlandic cryoconite holes. Environ Microbiol. 18(12):4674-4686 open in new tab
  10. Dastych H, Kraus HJ, Thaler K (2003) Redescription and notes on the biology of the glacier tardigrade Hypsibius klebelsbergi Mihel- cic, 1959 (Tardigrada), based on material from Ö tztal Alps, Austria. Mitt Hamb Zool Mus Inst 100:73-100
  11. De Smet WHE, Van Rompu A (1994) Rotifera and Tardigrada from some cryoconite holes on a Spitsbergen (Svalbard) glacier. Belg J Zool 124:27-37
  12. Dowdall M, Gerland S, Lind B (2003) Gamma-emitting natural and anthropogenic radionuclides in the terrestrial environment of Kongsfjord, Svalbard. Sci Total Environ 305:229-240 open in new tab
  13. Doyle SH, Hubbard A, van de Wal RSW, Box JE, van As D, Scharrer K, Meierbachtol TW, Smeets PCJP, Harper JT, Johansson E, Mottram RH, Mikkelsen AB, Wilhelms F, Patton H, Christo- ersen P, Hubbard B (2015) Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall. Nat Geosci 8:647-653 open in new tab
  14. Elster J, Degma P, Kováčik L ', Valentová L, Š ramková K, Batista Pereira A (2008) Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from the Antarctic, Arctic and Slovakia. Biologia 63(6):843-851 open in new tab
  15. Gawor J, Grzesiak J, Sasin-Kurowska J, Borsuk P, Gromadka R, Górniak D, Ś wiątecki A, Aleksandrzak-Piekarczyk T, Zda- nowski MK (2016) Evidence of adaptation, niche separation and microevolution within the genus Polaromonas on Arctic and Antarctic glacial surfaces. Extremophiles 20:403-413 open in new tab
  16. Gokul JK, Hodson AJ, Saetnan ER, Irvine-Fynn TD, Westall PJ, Detheridge AP, Takeuchi N, Bussell J, Mur LA, Edwards A (2016) Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap. Mol Ecol 25:3752-3767 open in new tab
  17. Grøngaard A, Pugh PJA, McInnes SJ (1999) Tardigrades, and other cryoconite biota, on the Greenland ice sheet. Zool Anz 238:211-214 open in new tab
  18. Grzesiak J, Górniak D, Ś wiątecki A, Aleksandrzak-Piekarczyk T, Szatraj K, Zdanowski MK (2015) Microbial community devel- opment on the surface of Hans and Werenskiold Glaciers (Svalbard, Arctic): a comparison. Extremophiles 19:885-897 open in new tab
  19. Guidetti R, Altiero T, Marchioro T, Sarzi Amade L, Avdonina AM, Bertolani R, Rebecchi L (2012) Form and function of the feeding apparatus in Eutardigrada (Tardigrada). Zoomorphology 131:127-148 open in new tab
  20. Hodson A, Anesio AM, Ng F, Watson R, Quirk J, Irvine-Fynn T, Dye A, Clark Ch, McCloy P, Kohler J, Sattler B (2007) A glacier respires: quantifying the distribution and respiration CO 2 flux of cryoconite across an entire Arctic supraglacial ecosystem. J Geophys Res 112(G4):G04S36. doi:10.1029/2007JG000452 open in new tab
  21. Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78:41-67 open in new tab
  22. Hodson A, Bøggild C, Hanna E, Huybrechts P, Langford H, Cameron K, Houldsworth A (2010a) The cryoconite ecosystem on the Greenland ice sheet. Ann Glaciol 51(56):123-129 open in new tab
  23. Hodson A, Cameron K, Bøggild C, Irvine-Fynn T, Langford H, Pearce D, Ban-Wart S (2010b) The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. J Glaciol 56:349-362 open in new tab
  24. Hoek C, Mann DG, Johns HM (1995) Alga: an introduction to phycology. Great Britain at University Press, Cambridge, p 623
  25. Irvine-Fynn TDL, Bridge JW, Hodson AJ (2010) Rapid quantification of cryoconite: granule geometry and in situ supraglacial extents, using examples from Svalbard and Greenland. J Glaciol 56:297-306 open in new tab
  26. Johannessen OM, Volkov VA, Pettersson LH, Maderich VS, Zheleznyak MJ, Gao Y, Bobylev LP, Stepanov AV, Neelov IA, Tishkov VP, Nielsen SP (2010) Radioactivity and pollution in the Nordic Seas and Arctic Region. Observations, modeling and simulation. Springer, New York Kaczmarek Ł, Jakubowska N, Celewicz-Gołdyn S, Zawierucha K (2016) Cryoconite holes microorganisms (algae, Archaea, bac- teria, cyanobacteria, fungi, and Protista)-a review. Polar Rec 52:176-203
  27. Kitzing Ch, Karsten U (2015) Effects of UV radiation on optimum quantum yield and sunscreen contents in members of the genera Interfilum, Klebsormidium, Hormidiella and Entransia (Kleb- sormidiophyceae, Streptophyta). Eur J Phycol 50:279-287. doi:10.1080/09670262.2015.1031190 open in new tab
  28. Limnology (2018) 19:141-150 149 open in new tab
  29. Klappenbach JA, Saxman PR, Cole JR, Schmidt TM (2001) rrnDB: the Ribosomal RNA Operon Copy Number Database. Nucl Acids Res 29:181-184 open in new tab
  30. Komárek J, Anagnostidis K (2005) Cyanoprocaryota; open in new tab
  31. Oscillatoriales II. In Büdel AB, Krienitz L, Gärtner G, Schagerl M (eds) Sübwasserflora von Mitteleuropa, 19.2, Spektrum Akademischer Verlag 759 open in new tab
  32. Komárek J, Nedbalová L (2007) Green cryosestic algae. Algae Cyanobacteria Extrem Environ 11:321-342 open in new tab
  33. Kosztyła P, Stec D, Morek W, Gąsiorek P, Zawierucha K, Michno K, Ufir K, Małek D, Hlebowicz K, Laska A, Dudziak M, Frohme M, Prokop ZM, Kaczmarek Ł, Michalczyk Ł (2016) Experi- mental taxonomy confirms the environmental stability of mor- phometric traits in a taxonomically challenging group of microinvertebrates. Zool J Linn Soc 178(4):765-775 open in new tab
  34. Langford HJ, Irvine-Fynn TDL, Edwards A, Banwart SA, Hodson AJ (2014) A spatial investigation of the environmental controls over cryoconite aggregation on Longyearbreen glacier, Svalbard. Biogeosciences 11:5365-5380 open in new tab
  35. Lehmann S, Gajek G, Chmiel S, Polkowska _ Z (2016) Do morpho- metric parameters and geological conditions determine chem- istry of glacier surface ice? Spatial distribution of contaminants present in the surface ice of Spitsbergen glaciers (European Arctic). Environ Sci Pollut Res 23(23):23385-23405 open in new tab
  36. Łokas E, Bartmiński P, Wachniew P, Mietelski JW, Kawiak T, Srodoń J (2014) Sources and pathways of artificial radionuclides to soils at a High Arctic site. Environ Sci Pollut Res 21:12479-12493 open in new tab
  37. Łokas E, Zaborska A, Kolicka M, Ró _ zycki M, Zawierucha K (2016) open in new tab
  38. Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier. Chemosphere 160:162-172 open in new tab
  39. Lutz S, Anesio AM, Villar SEJ, Benning LG (2014) Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol Ecol. doi:10.1111/1574-6941.12351 open in new tab
  40. Melone G, Ricci C, Segers H (1998) The trophi of Bdelloidea (Rotifera): a comparative study across the class. Can J Zool 76:1755-1765 open in new tab
  41. Mueller DR, Vincent WF, Pollard WH, Fritsen CH (2001) Glacial cryoconite ecosystems: a bipolar comparison of algal commu- nities and habitats. Nova Hedwig Beih 123:173-197 open in new tab
  42. Napiórkowska-Krzebietke A, Pasztaleniec A, Hutorowicz A (2012) Phytoplankton metrics response to the increasing phosphorus and nitrogen gradient in shallow lakes. J Elem 17:289-303. doi:10.5601/jelem.2012.17.2.11 open in new tab
  43. Paatero J, Vira J, Siitari-Kauppi M, Hatakka J, Holmén K, Viisanen Y (2012) Airborne fission products in the High Arctic after the Fukushima nuclear accident. J Environ Radioac 114:41-47 open in new tab
  44. Porazińska DL, Fountain AG, Nylen TH, Tranter M, Virginia RA, Wall DH (2004) The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley Glaciers, Antarc- tica. Arct Antarct Alp Res 36:84-91 open in new tab
  45. Singh P, Hanada Y, Singh SM, Tsuda S (2014) Antifreeze protein activity in Arctic cryoconite bacteria. FEMS Microbiol Lett 35:14-22 open in new tab
  46. Stalder T, Barraud O, Casellas M, Dagot C, Ploy MC (2012) Integron involvement in environmental spread of antibiotic resistance. Front Microbiol 3:119 open in new tab
  47. Starmach K, (1972) Flora słodkowodna Polski: Chlorophyta III. Zielenice nitkowate 10. PWN, Warszawa, Kraków 751
  48. Stibal M, Lawson EC, Lis GP, Mak KM, Wadham JL, Anesio AM (2010) Organic matter content and quality in supraglacial debris across the ablation zone of the Greenland ice sheet. Ann Glaciol 51:1-8 open in new tab
  49. Stibal M, Telling J, Cook J, Mak KM, Hodson A, Anesio AM (2012) Environmental controls on microbial abundance and activity on the Greenland ice sheet: a multivariate analysis approach. Microbial Ecol 63:74-84 open in new tab
  50. Stibal M, Schostag M, Cameron KA, Hansen LH, Chandler DM, Wadham JL, Jacobsen CS (2015) Different bulk and active bacterial communities in cryoconite from the margin and interior of the Greenland Ice Sheet. Environ Microbiol Rep 7:293-300 open in new tab
  51. Takeuchi N, Kohshima S, Shiraiwa T, Kubota K (2001a) Character- istics of cryoconite (surface dust on glaciers) and surface albedo of a Patagonian glacier, Tyndall Glacier, Southern Patagonia Icefield. Bull Glaciol Res 18:65-69
  52. Takeuchi N, Kohshima S, Seko K (2001b) Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct Antarct Alp Res 33:115-122 open in new tab
  53. Takeuchi N, Nishiyama H, Li Z (2010) Structure and formation process of cryoconite granules on Ü rümqiglacier No. 1, Tien Shan, China. Ann Glaciol 51(56):9-14 open in new tab
  54. R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  55. Uetake J, Naganuma T, Hebsgaard MB, Kanda H, Kohshima S (2010) Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Sci 4:71-80 open in new tab
  56. Uetake J, Tanaka S, Segawa T, Takeuchi N, Nagatsuka N, Motoyama H, Aoki T (2016) Microbial community variation in cryoconite granules on Qaanaaq Glacier, NW Greenland. FEMS Microbiol Ecol 92:1-10 open in new tab
  57. Vonnahme TR, Devetter M, Zárský JD, Sabacká M, Elster J (2015) Controls on microalgal community structures in cryoconite holes upon High Arctic glaciers, Svalbard. Biogeosciences 12:11751-11795 open in new tab
  58. Wharton RA, McKay CP, Simmons GM, Parker BC (1985) Cryoconite holes on glaciers. Bioscience 35:449-503 open in new tab
  59. Xi C, Zhang Y, Marrs YL, Ye W, Simon C, Foxman B, Nriagu J (2009) Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Appl Environ Microbiol 75:5714-5718 open in new tab
  60. Zawierucha K, Kolicka M, Takeuchi N, Kaczmarek Ł (2015) What animals can live in cryoconite holes? A faunal review. J Zool 295:159-169 open in new tab
  61. Zawierucha K, Ostrowska M, Vonnahme TR, Devetter M, Nawrot AP, Lehmann S, Kolicka M (2016a) Diversity and distribution of Tardigrada in Arctic cryoconite holes. J Limnol 75:545-559 open in new tab
  62. Zawierucha K, Vonnahme TR, Devetter M, Kolicka M, Ostrowska M, Chmielewski S, Kosicki JZ (2016b) Area, depth and elevation of cryoconite holes in the Arctic do not influence Tardigrada densities. Pol Polar Res 37:325-334 open in new tab
  63. Zuur A, Leno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York
Verified by:
Gdańsk University of Technology

seen 95 times

Recommended for you

Meta Tags