Abstract
In recent times, the number of spam reviews through various online platforms has emerged as a prime challenge, profoundly impacting businesses and consumers. These fake reviews not only distort clients’ perceptions of products and services but also erode trust within the digital ecosystem. Despite the advent of machine learning (ML) techniques for identifying spam reviews, comparing text, and pinpointing groups of spammers, there remain notable gaps in both accuracy and the combination of interactive visualization for real-time decision-making. This paper presents SpamVis, a visual interactive system that leverages deep learning (DL) and ML blended with advanced visualization techniques for spam review detection, enabling analysts to conduct complicated analytical queries. The system allows users to input via click-on or touch to generate interactive charts and plots tailored for spam review analysis. The findings of the baseline test carried out on 67,395 review texts demonstrate that Bidirectional Encoder Representations from Transformers (BERT) carried out the best accuracy (86%) compared to other models. Our outcomes suggest that SpamVis can alleviate the gaps concerning accuracy and visualization needs in contemporary techniques, guiding analysts to make informed decisions for mitigating spam reviews and enhancing consumer trust. Furthermore, SpamVis empowers users to seamlessly discover the online reviews of various social media platforms in real-time, such as Facebook, Youtube, etc., giving them practical insights to navigate the online marketplace effectively
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (5)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.procs.2024.09.620
- License
- open in new tab
Keywords
Details
- Category:
- Conference activity
- Type:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Lam N. T. T., Le N. U. P., Islam M. R., Sanin C., Szczerbicki E.: SpamVis: A Visual Interactive System for Spam Review Detection// / : , 2024,
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.procs.2024.09.620
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 10 times
Recommended for you
Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks
- L. Fei,
- Z. Jiayan,
- S. Jiaqi
- + 1 authors
LDNet: A Robust Hybrid Approach for Lie Detection Using Deep Learning Techniques
- S. A. Prome,
- M. R. Islam,
- D. Asirvatham
- + 3 authors
Human Feedback and Knowledge Discovery: Towards Cognitive Systems Optimization
- C. S. de Oliveira,
- C. Sanin,
- E. Szczerbicki