Study on Microstructure-Property Relationship of Inconel 617 Alloy/304L SS Steel Dissimilar Welds Joint
Abstract
Welding of Inconel 617 (IN617) alloy and austenitic 304L SS steel has been attempted using the autogenous Laser Beam Welding (LBW) process. Characterization of dissimilar weldments was performed on either side of the fusion boundaries. The metallographic results showed that the inhomogeneous microstructure formation for weld metal contained columnar and cellular dendrites near the interface, whilst the columnar, cellular and equiaxed types of dendrites were in the weld centre. The energy dispersive spectroscopy (EDS) and electron probe microanalysis (EPMA) studies revealed the white layer near the interface on both sides of the fusion line, as well as a significant change in the concentration of alloying elements (Fe, Cr, Ni, Co, and Mo). The weld metal accompanied by Cr, Ti and Mo precipitates evolved in the inter-dendritic spaces. The Cr and Mo-rich M23C6 and Mo-rich M6C phases in IN617 heat-affected zone (HAZ) were found in SEM/EDS and EPMA studies. The 304L SS side showed a distinct HAZ, whilst on the IN617 side, no distinct HAZ was seen. Samples were prepared from the dissimilar weldments to evaluate their mechanical properties, such as tensile strength and hardness. The microhardness plot showed the non-uniformity in hardness along the weldments. The weld metal hardness was 253 ± 10 HV. The tensile test of the welded joint results was compared with the base metals. The tested results exhibited that the failure of the specimen from 304L SS base metal (BM) or from weld metal with tensile strength was marginally lower than the Inconel 617 base metal but significantly higher than the 304L SS BM. The fracture surface study revealed the presence of Mo and Cr segregation in inter-dendritic spaces, which impoverished the tensile properties. The order of impact toughness was measured as follows: 304L SS BM > 304L SS HAZ>IN617 BM>weld metal>IN617 HAZ. The IN617 HAZ was recognised as the weakest area of the weldments in terms of impact strength. The welded joint was considered safe for AUSC application because the stress-rupture properties were evaluated in between base metals data.
Citations
-
1 7
CrossRef
-
0
Web of Science
-
1 9
Scopus
Authors (6)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE
no. 54,
pages 3844 - 3870,
ISSN: 1073-5623 - Language:
- English
- Publication year:
- 2023
- Bibliographic description:
- Kumar A., Guguloth K., Pandey S. M., Fydrych D., Sirohi S., Pandey C.: Study on Microstructure-Property Relationship of Inconel 617 Alloy/304L SS Steel Dissimilar Welds Joint// METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE -,iss. 10 (2023), s.3844-3870
- DOI:
- Digital Object Identifier (open in new tab) 10.1007/s11661-023-07136-3
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 63 times
Recommended for you
Dissimilar autogenous TIG joint of Alloy 617 and AISI 304H steel for AUSC application
- S. Sirohi,
- A. Kumar,
- S. M. Pandey
- + 4 authors
Microstructure and Mechanical Properties of Combined GTAW and SMAW Dissimilar Welded Joints between Inconel 718 and 304L Austenitic Stainless Steel
- S. Sirohi,
- S. M. Pandey,
- A. Świerczyńska
- + 5 authors
Metallurgical characterization and high-temperature tensile failure of Inconel 617 alloy welded by GTAW and SMAW—a comparative study
- S. Sirohi,
- N. Kumar,
- A. Kumar
- + 4 authors
P92 steel and inconel 617 alloy welds joint produced using ERNiCr-3 filler with GTAW process: Solidification mechanism, microstructure, mechanical properties and residual stresses
- A. Kumar,
- S. M. Pandey,
- S. Sirohi
- + 2 authors