Superconductivity in Metal-Rich Chalcogenide Ta2Se - Publication - Bridge of Knowledge

Search

Superconductivity in Metal-Rich Chalcogenide Ta2Se

Abstract

The metal–metal bond in metal-rich chalcogenide is known to exhibit various structures and interesting physical properties. Ta2Se can be obtained by both arc-melting and solid-state pellet methods. Ta2Se crystallizes a layered tetragonal structure with space group P4/nmm (No. 129; Pearson symbol tP6). Each unit cell consists of four layers of body-centered close-packing Ta atoms sandwiched between two square nets of Se atoms, forming the Se–Ta–Ta–Ta–Ta–Se networks. Herein, we present magnetic susceptibility, resistivity, and heat capacity measurements on Ta2Se, which together indicate bulk superconductivity with Tc = 3.8(1) K. According to first-principles calculations, the d orbitals in Ta atoms dominate the Fermi level in Ta2Se. The flat bands at the Γ point in the Brillouin zone yield the van Hove singularities in the density of states around the Fermi level, which is intensified by introducing a spin–orbit coupling effect, and thus could be critical for the superconductivity in Ta2Se. The physical properties, especially superconductivity, are completely different from those of Ta-rich alloys or transition-metal dichalcogenide TaSe2.

Citations

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
INORGANIC CHEMISTRY no. 59, pages 5798 - 5802,
ISSN: 0020-1669
Language:
English
Publication year:
2020
Bibliographic description:
Gui X., Górnicka K., Chen Q., Zhou H., Klimczuk T., Xie W.: Superconductivity in Metal-Rich Chalcogenide Ta2Se// INORGANIC CHEMISTRY -Vol. 59,iss. 9 (2020), s.5798-5802
DOI:
Digital Object Identifier (open in new tab) 10.1021/acs.inorgchem.9b03656
Verified by:
Gdańsk University of Technology

seen 113 times

Recommended for you

Meta Tags