The Effect of Laser Re-Solidification on Microstructure and Photo-Electrochemical Properties of Fe-Decorated TiO2 Nanotubes
Abstract
Fossil fuels became increasingly unpleasant energy source due to their negative impact on the environment; thus, attractiveness of renewable, and especially solar energy, is growing worldwide. Among others, the research is focused on smart combination of simple compounds towards formation of the photoactive materials. Following that, our work concerns the optimized manipulation of laser light coupled with the iron sputtering to transform titania that is mostly UV-active, as well as exhibiting poor oxygen evolution reaction to the material responding to solar light, and that can be further used in water splitting process. The preparation route of the material was based on anodization providing well organized system of nanotubes, while magnetron sputtering ensures formation of thin iron films. The last step covering pulsed laser treatment of 355 nm wavelength significantly changes the material morphology and structure, inducing partial melting and formation of oxygen vacancies in the elementary cell. Depending on the applied fluence, anatase, rutile, and hematite phases were recognized in the final product. The formation of a re-solidified layer on the surface of the nanotubes, in which thickness depends on the laser fluence, was shown by microstructure studies. Although a drastic decrement of light absorption was recorded especially in UV range, laser-annealed samples have shown activity under visible light even 20 times higher than bare titania. Electrochemical analysis has shown that the improvement of photoresponse originates mainly from over an order of magnitude higher charge carrier density as revealed by Mott-Schottky analysis. The results show that intense laser light can modulate the semiconductor properties significantly and can be considered as a promising tool towards activation of initially inactive material for the visible light harvesting.
Citations
-
2
CrossRef
-
0
Web of Science
-
2
Scopus
Authors (5)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Materials
no. 13,
ISSN: 1996-1944 - Language:
- English
- Publication year:
- 2020
- Bibliographic description:
- Kupracz P., Grochowska K., Karczewski J., Wawrzyniak J., Siuzdak K.: The Effect of Laser Re-Solidification on Microstructure and Photo-Electrochemical Properties of Fe-Decorated TiO2 Nanotubes// Materials -Vol. 13,iss. 18 (2020), s.4019-
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/ma13184019
- Verified by:
- Gdańsk University of Technology
seen 106 times
Recommended for you
The pulsed laser ablation synthesis of colloidal iron oxide nanoparticles for the enhancement of TiO2 nanotubes photo-activity
- P. Kupracz,
- E. Coy,
- K. Grochowska
- + 3 authors
Spectacular Oxygen Evolution Reaction Enhancement Through Laser Processing of the Nickel-Decorated Titania Nanotubes
- J. Wawrzyniak,
- J. Karczewski,
- E. Coy
- + 5 authors
Organic pollutants photodegradation increment with use of TiO2 nanotubes decorated with transition metals after pulsed laser treatment
- Z. Bielan,
- A. Kubiak,
- J. Karczewski
- + 5 authors