Tuftsin-Properties and Analogs - Publication - Bridge of Knowledge

Search

Tuftsin-Properties and Analogs

Abstract

Immunomodulation is one of the significant therapeutic strategies. It includes both stimulation or suppression of the immune system by a variety of substances called immunomodulators, designed to regulate the immune response of the organism to infections of varying etiology. An example of such a substance is tuftsin (TKPA) 3 (Fig. (1)). Tuftsin is an endogenous immunomodulator of a wide spectrum of biological activity. Tetrapeptide 3 provides also antitumor, antimicrobial, anticoagulant and analgesic properties. In this paper, we presented tuftsin derivatives described over the years, its biological activity and potential clinical applications.

Citations

  • 3 1

    CrossRef

  • 0

    Web of Science

  • 3 3

    Scopus

Cite as

Full text

download paper
downloaded 323 times
Publication version
Accepted or Published Version
License
Copyright (2017 Bentham Science Publishers)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
CURRENT MEDICINAL CHEMISTRY no. 24, edition 42, pages 1 - 18,
ISSN: 0929-8673
Language:
English
Publication year:
2017
Bibliographic description:
Siebert A., Gensicka-Kowalewska M., Cholewiński G., Dzierzbicka K.: Tuftsin-Properties and Analogs// CURRENT MEDICINAL CHEMISTRY. -Vol. 24, iss. 42 (2017), s.1-18
DOI:
Digital Object Identifier (open in new tab) 10.2174/0929867324666170725140826
Bibliography: test
  1. Dutta, R.C. Peptide immunomodulators versus infection; an analysis. Immunol. Lett., 2002, 83, 153-161. open in new tab
  2. Najjar, V.A.; Nishioka, K. Tuftsin: a natural phagocytosis stimulating peptide. Nature, 1970, 228, 672-673. open in new tab
  3. Nishioka, K.; Sato, P.S.; Constantopoulos, A.; Najjar, V.A. The chemical synthesis of the phagocytosis-stimulating tetrapeptide tuftsin (Thr-Lys-Pro-Arg) and its biological properties. Biochim. Biophys. Acta, 1973, 310, 230-237. open in new tab
  4. Siemion, I.Z.; Kluczyk, A. Tuftsin: on the 30-year anniver- sary of Victor Najjar's discovery. Peptides, 1999, 20, 645- 674. open in new tab
  5. Dzierzbicka, K.; Rakowski, T.; Kołodziejczyk, A.M. Tuft- sin -endogenous immunomodulatory. Post. Biochem., 2000, 46, 327-335. open in new tab
  6. Wardowska, A.; Dzierzbicka, K.; Myśliwski, A. Tuftsin - new analogues and properties. Post. Biochem., 2007, 53, 60-65. open in new tab
  7. Wardowska, A.; Dzierzbicka, K.; Trzonkowski, P.; Myśliwski, A. Immunomodulatory properties of new con- jugates of muramyl dipeptide and nor-muramyl dipeptide with retro-tuftsin (Arg-Pro-Lys-Thr-OMe). Int. Immuno- pharmacol., 2006, 6, 1560-1568. open in new tab
  8. Dzierzbicka, K.; Trzonkowski, P.; Sewerynek, P.; Kołodziejczyk, A.M.; Myśliwski, A. Synthesis and biologi- cal activity of tuftsin, its analogue and conjugates contain- ing muramyl dipeptides or nor-muramyl dipeptides. J. Pept. Sci., 2005, 11, 123-135. open in new tab
  9. Corazza, G.R.; Zoli, G.; Ginaldi, L.; Cancellier, C.; Profcta, V.; Gasparrini, G.; Quaglino, D. Tuftsin deficiency in aids. Lancet, 1991, 337, 12-13. open in new tab
  10. Fiedel, B.A. Influence of tuftsin-like synthetic peptides derived from C-reactive protein (CRP) on platelet behavior. Immunology, 1988, 64, 487-93.
  11. Buchta, R.; Fridkin, M.; Pontet, M.; Romeo, D. Synthetic peptides from C-reactive protein containing tuftsin-related sequences. Peptides, 1986, 7, 961-968. open in new tab
  12. Robey, F.A.; Ohura, K.; Futaki, S.; Fujii, N.; Yajima, H.; Goldman, N.; Jones, K.D.; Wahl, S. Proteolysis of human C-reactive protein produces peptides with potent immuno- modulating activity. J. Biol. Chem., 1987, 262, 7053-7.
  13. Shephard, E.G.; Anderson, R.; Rosen, O.; Myer, M.S.; Fridkin, M.; Strachan, A.F.; De Beer, F.C. Peptides gener- ated from C-reactive protein by a neutrophil membrane pro- tease. Amino acid sequence and effects of peptides on neu- trophil oxidative metabolism and chemotaxis. J. Immunol., 1990, 145, 1469 -76.
  14. Herman, Z.S.; Stachura, Z.; Opielka, Ł.; Siemion, Z.; Nawrocka, E. Tuftsin and D-ARG3-tuftsin possess analge- sic action. Experientia, 1981, 37, 76-77. open in new tab
  15. Siemion, Z.; Kluczyk, A.; Cebrat, M. The peptide molecular links between the central nervous and the immune systems. Amino Acids, 2005, 29, 161-176. open in new tab
  16. Wu, M.; Nissen, J.C.; Chen, E.I.; Tsirka, S.E. Tuftsin pro- motes an anti-inflammatory switch and attenuates symp- toms in experimental autoimmune encephalomyelitis. Plos One, 2012, 4, 34933. open in new tab
  17. Tarnowski, J.; Wlekik, M.; Gumułka, S.W.; Łuczak, M.; Konopińska, D. An epithelial scatter factor released by em- bryo fibroblasts. J. Cell. Sci., 1985, 37, 41-45. open in new tab
  18. Paradowski, A.; Rózga, M.; Nawrocka, E.; Siemion, I.Z. Archivum immunologiae et therapiae experimentalis, Arch. Immunol. Ther. Exp., 1991, 39, 159-164. open in new tab
  19. Lelekova, T.V.; Romanowski, P.I.; Aleksandrov, P.N.; Ashmarin, I.P. Effects of femto-and picomolar concentra- tions of thyroliberin and tuftsin on the contractile activity of lymphatic vessels of the rat mesentery. Biull Eksp. Biol. Med., 1989, 108, 8-10. open in new tab
  20. Raibon, E.; Sauve, Y.; Carter, D.A.; Gaillard, F. Microglial changes accompanying the promotion of retinal ganglion cell axonal regeneration into peripheral nerve grafts. J. Neu- rocytol., 2002, 31, 57-71. open in new tab
  21. Wang, J.; Rogove, A.D.; Tsirka, A.E. Protectove Role of tuftsin fragment 1-3 in an animal model of intracerebral hemorrhage. Ann. Neurol., 2003, 54, 655-664. open in new tab
  22. Haspel, N.; Zanuy, D.; Nussinov, R.; Teesalu, T.; Ruoslahti, E.; Aleman, C. Binding of a C-end rule peptide to the neu- ropilin-1 receptor: a molecular modeling approach. Bio- chem., 2011, 50, 1755-1762. open in new tab
  23. Nissen, J.C.; Selwood, D.L., Tsirka, S.E. Tuftsin signal through its receptor neuropilin-1 via the transforming growth factor beta pathway. J. Neurochem., 2013, 127, 394- 402. open in new tab
  24. von Wronski, M.; Raju, N.; Pillai, R.; Bogdan, N.J.; Marinelli, E.R.; Nanjappan, P.; Ramalingam, K.; Arunacha- lam, T.; Eaton, S.; Linder, K.E.; Yan, F.; Pochon, S.; Tweedle, M.F.; Nunn, A.D. Tuftsin binds neuropilin-1 through a sequence similar to that encoded by exon 8 of vascular endothelial growth factor. J. Biol. Chem., 2006, 281, 5702-5710. open in new tab
  25. Nissen, C.J.; Tsirka, S.E. Tuftsin-Driven Experimental Autoimmune Encephalomyelitis Recovery Requires Neu- ropilin-1. Wiley Periodicals, 2016, 64, 923-936. open in new tab
  26. Mezo, G.; Kalaszi, A.; Remenyi, J.; Majer, Z.; Hilbert, A.; Lang, O.; Kohidai, L.; Barna, K.; Gaal, D.; Hudecz, F. Syn- thesis, conformation, and immunoreactivity of new carrier molecules based on repeated tuftsin-like sequence. Bio- polymers, 2004, 73, 646-656.
  27. Trevisani, F.; Castelli, E.; Foschi, F.G.; Parazza, M.; Loggi, E.; Betelli,M.; Melotti, C.; Domenicali, M.; Zoli, G.; Ber- nardi, M. Impaired tuftsin activity in cirrhosis: relationship with splenic function and clinical outcome. Gut, 2002, 50, 707-712. open in new tab
  28. Pavlov, T.S.; Samonina, G.E. A new property of endoge- nous immunostimulator taftsin. B Exp. Biol. Med., 2004, 138, 163-164. open in new tab
  29. Saravanabava, K.; Nachimuthu, K.; Padmanaban, V.D. Effect of tuftsin on embryo vaccination with Newcastle dis- ease virus vaccine. Comp. Immun. Microbiol. Infect. Dis., 2005, 28, 269-276. open in new tab
  30. Kozlovskaya, M.M.; Kozlovskii, H.; Valdman, E.A.; Sere- denin, S.B. Selank and short peptides of the tuftsin family in the regulation of adaptive behavior in stress. Neurosci. Behav. Physiol., 2003, 33, 853-860. open in new tab
  31. Leo, D.; Ma, J. Enhancement of anti-idiotypic immune response by tuftsin in single-chain Fv-tuftsin fusion protein. Biotechnol. Lett., 2000, 22, 1925-1927.
  32. Siddiqui, M.Z.; Sharma, A.K.; Kumar, S. Solution confor- mation of tuftsin. Int. J. Biological. Micromolecules, 1996, 19, 99-102. open in new tab
  33. Gao, Y.; Su, Q.; Yi, Y.; Jia, Z.; Wang, H.; Lu, X.; Qiu, F.; Bi, S. Enhanced mucosal immune responses induced by a combined candidate mucosal vaccine based on hepatitis A virus and hepatitis E virus structural proteins linked to tuft- sin. Plos One, 2015, 10, 0123400. open in new tab
  34. Lee, J.M.; Lee, H.H.; Hwang, B.J.; Shon, D.H.; Kim, W.; Chung, I.S. Expression and immunogenicity of recombinant polypeptide VP1 of human hepatitis A virus in stably trans- formed fruitfly (Drosophila melanogaster) Schneider 2 cells. Biotech. Applied Biochem., 2009, 53, 101-109. open in new tab
  35. Li, S.W.; Zhang, J.; Li, Y.M.; Ou, S.H.; Huang, G.Y.; He, Z.Q.; Ge, S.X.; Xian, Y.L.; Pang, S.Q.; Ng, M.H.; Xia, N.S. A bacterially expressed particulate hepatitis E vaccine: antigenicity, immunogenicity and protectivity on primates. Vaccine, 2005, 23, 2893-2901. open in new tab
  36. Liu, X.; Guo, J.; Han, S.; Yao, L.; Chen, A.; Yang, Q.; Bo, H.; Xu, P.; Yin, J.; Zhang, Z. Enhanced immune response induced by a potential influenza A vaccine based on branched M2e polypeptides linked to tuftsin. Vaccine, 2012, 30, 6527-6533. open in new tab
  37. Feng, J.Q.; Zhang, M.X.; Mozdzanowska, K.; Zharikova, D.; Hoff, H.; Wunner, W.; Couch, R.B.; Gerhard, W. Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2. Virol J., 2006, 3, 102-114. open in new tab
  38. Jegerlehner, A.; Schmitz, N.; Storni, T.; Bachmann, M.F. Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibodydependent NK cell activity. J. Immunol., 2004, 172, 5598-605. open in new tab
  39. Wang, R.F.; Song, A.H.; Levin, J.; Dennis, D.; Zhang, N.J.; Yoshida, H.; Mikayama, T.; Kubo, R.T.; Sarawar, S.; Cheroutre, H.; Kato, S. Therapeutic potential of a fully hu- man monoclonal antibody against influenza A virus M2 protein. Antivir. Res., 2008, 80, 168-77. open in new tab
  40. Tabata, Y.; Ikada, Y. Biological functions of fullerene. Pure Appl. Chem., 1999, 71, 2047-2053. open in new tab
  41. Zhu, J.D.; Ji, Z.Q.; Wang, J.; Sun, R.H.; Zhang, X.; Gao, Y.; Sun, H.; Liu, Y.; Wang, Z.; Li, A.; Ma, J.; Wang, T.; Jia, G.; Gu, Y. Tumor-inhibitory effect and immunomodu- latory activity of fullerol C60(OH)x. Small, 2008, 4, 1168- 1175. open in new tab
  42. Xu, Y.; Zhu, J.; Xiang, K.; Li, Y.; Sun, R.; Ma, J.; Sun, H.; Liu, Y. Synthesis and immunomodulatory activity of [60]fullerene tuftsin conjugates. Biomaterials, 2011, 32, 9940-9949. open in new tab
  43. Fridkin, M.; Tsubery, H.; Tzehoval, E.; Vonsover, A.; Bi- ondi, L.; Filira, F.; Rocchi, R. Tuftsin-AZT conjugates: po- tential macrophage targeting for AIDS therapy. J. Peptide Sci., 2005, 11, 37-44. open in new tab
  44. Gokulan, K.; Khare, S.; Rao, D.N. Increase in the immuno- genicity of HIV peptide antigens by chemical linkage to polytuftsin (TKPR40). DNA Cell Biol., 1999, 18, 623-630. open in new tab
  45. Tripathi, S.K.; Goyal, R.; Kashyap, P.M.; Pant, A.B.; Haq, W.; Kumar, P.; Gupta, K.C. Depolymerized chitosans func- tionalized with bPEI as carriers of nucleic acids and tuftsin- tethered conjugate for macrophage targeting. Biomaterials, 2012, 33, 4204-4219. open in new tab
  46. Liu, W.J.; Liu, X.J.; Li, L.; Li, Y.; Zhang, S.H.; Zhen, Y.S. Tuftsin-based, EGFR-targetong Fusion protein and its enediyne-energized analog show high antitumor efficacy associated with CD47 down-regulation. Cancer Immunol. Immunother., 2014, 63, 1261-1272. open in new tab
  47. Yuan, W.; Xia, G.; Zhao, CH.; Sui, CH.; Ma, J. Anti- idiotypic single chain mimicking CA125 linked with tuftsin provides protective immunity against ovarian cancer in mice. Mol. Med. Rep., 2012, 5, 388-394.
  48. Willingham, S.B.; Volkmer, J.P.; Gentles, A.J.; Sahoo, D.; Dalerba, P.; Mitra, S.S.; Wang, J.; Contreras-Trujillo, H.; Martin, R.; Cohen, J.D.; Lovelace, P.; Scheeren, F.A.; Chao, M.P.; Weiskopf, K.; Tang, C.; Volkmer, A.K.; Naik, T.J.; Storm, T.A.; Mosley, A.R.; Edris, B.; Schmid, S.M.; Sun, C.K.; Chua, M.S.; Murillo, O.; Rajendran, P.; Cha, A.C.; Chin, R.K.; Kim, D.; Adorno, M.; Raveh, T.; Tseng, D.; Jaiswal, S.; Enger, P.O.; Steinberg, G.K.; Li, G.; So, S.K.; Majeti, R.; Harsh, G.R.; van de Rijn, M.; Teng, N.N.; Sunwoo, J.B.; Alizadeh, A.A.; Clarke, M.F.; Weissman, I.L. The CD47-signal regulatory protein alpha (SIRPa) in- teraction is a therapeutic target for human solid tumors. Proc. Nat. Acad Sci. USA, 2012, 109, 6662-6667. open in new tab
  49. Kukowska-Kaszuba, M.; Dzierzbicka, K.; Maćkiewicz, Z. Synthesis of linear tuftsin analogues modified at the ε- amino group of lysine. Tetrahedron Lett., 2008, 49, 5718- 5720. open in new tab
  50. Kukowska-Kaszuba, M.; Dzierzbicka, K.; Serocki, M.; Składanowski, A. Solid phase synthesis and biological ac- tivity of tuftsin conjugates. J. Med. Chem., 2011, 54, 2447- 2454. open in new tab
  51. Januchta, W.; Serocki, M.; Dzierzbicka, K.; Cholewiński, G.; Skladanowski, A. Synthesis of functionalized new con- jugates of batracylin with tuftsin/retro-tuftsin derivatives and their biological evaluation. Eur. J. Med. Chem., 2015, 106, 85-94. open in new tab
  52. Gu, R.; He, Y.; Han, S.; Yuan, S.; An, Y.; Meng, Z.; Zhu, X.; Gan, H.; Wu, Z.; Li, J.; Zheng, Y.; Zhang, L.; Gao, L.; Dou, G. Pharmacokinetics and bioavailability of tuftsin- derived T peptide, a promising antitumor agent, in beagles. Drug Met. Pharmacokinetics, 2016, 31, 51-56. open in new tab
  53. J. Feng, J.; Meloni, M.M.; Allan, S.M.; Faulkner, S.; Nar- vainen, J.; Vidyasagar, R.; Kauppinen, R. Tuftsin deriva- tives of FITC, Tβ-DOTA or Gd-DOTA as potential macro- phage-specific imaging biomarkers. Contrast Media Mol. Imaging., 2010, 223-230. open in new tab
  54. Bhasin, M.; Wu, M.; Tsirka, S.E. Modulation of micro- glial/macrophage activation by macrophage inhibitory fac- tor (TKP) or tuftsin (TKPR) attenuates the disease course of experimental autoimmune encephalomyelitis. BMC Immu- nol., 2007, 8, 10. open in new tab
  55. Anthony, R.M.; Rutitzky, L.I.; Urban, J.F., Stadecker, M.J., Gause, W.C. Protective immune mechanisms in helminth infection. Nat. Rev. Immunol., 2007, 7, 975-987. open in new tab
  56. Shor, D.B.; Shoenfeld, Y. Autoimmunity: will worms cure rheumatoid arthritis? Nat. Rev. Rheumatol., 2013, 9, 138- 140. open in new tab
  57. Ben-Ami Shor, D.; Bashi, T.; Lachnish, J.; Fridkin, M.; Bizzaro, G.; Barshak, I.; Blank, M.; Shoenfeld, Y. Phos- phorylcholine-tuftsin compound prevents development of dextransulfate-sodium-salt induced murine colitis: implica- tions for the treatment of human inflammatory bowel dis- ease. J. Autoimmun., 2015, 56, 111-117.
  58. Sotgiu, S.; Sannella, A.R.; Conti, B.; Arru, G.; Fois, M.L.; Sanna, A.; Severini, C.; Morale, M.C.; Marchetti, B.; Ro- sati, G.; Musumeci, S. Multiple sclerosis and anti- Plasmodium falciparum innate immune response. J. Neuro- immunol., 2007, 185, 201-207. open in new tab
  59. Zaccone, P.; Cooke, A. Vaccine against autoimmune dis- ease: can helminths or their products provide a therapy? Curr. Opin. Immunol., 2013, 25, 418-423. open in new tab
  60. Summers, R.W.; Elliott, D.E.; Urban, J.F.; Thompson, R.; Weinstock, J.V. Trichuris suis therapy in Crohn's disease. Gut, 2005, 54, 87-90. open in new tab
  61. Summers, R.W.; Elliott, D.E.; Urban, J.F.; Thompson, R.A.; Weinstock, J.V. Trichuris suis therapy for active ul- cerative colitis: a randomized controlled trial. Gastroen- terology, 2005, 128, 825-832. open in new tab
  62. Bashi, T.; Blank, M.; Shor, D. B-A.; Fridkin, M.; Versini, M.; Gendelman, O.; Volkov, A.; Barshak, I.; Shoenfeld, Y. Successful modulation of murine lupus nephritis with tuft- sin-phosphorylcholine. J. Autoimmunity, 2015, 59, 1-7. open in new tab
  63. Bashi, T.; Shovman, O.; Fridkin, M.; Volkov, A.; Barshack, I.; Blank, M.; Shoenfeld, Y. Novel therapeutic compound tuftsin-phosphorylcholine attenuates collagen-induced ar- thritis. Clin. Exp. Immunol., 2016, 184, 19-28. open in new tab
  64. Jain, S.; Amiji, M. Tuftsin -modified alginate nanoparticles as a noncondensing macrophage-targeted DNA delivery system. Biomacromolecules, 2012, 13, 1074−1085. open in new tab
  65. Jain, S.; Tran, T.H.; Amiji, M. Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plas- mid DNA for the treatment of experimental arthritis. Bio- materials, 2015, 61, 162-177. open in new tab
  66. Kolomin, T.; Shadrina, M.; Andreeva, L.; Slominsky, P.; Limborska, S.; Myasoedov, N. Expression of inflammation- related genes in mouse spleen under tuftsin analog Selank. Regul. Pept., 2011, 170, 18-23. open in new tab
  67. Kolomin, T.; Morozova, M.; Volkova, A.; Shadrina, M.; Andreeva, L.; Slominsky, P.; Limborska, S.; Myasoedov, N. The temporary dynamics of inflammation-related genes expressionunder tuftsin analog Selank action. Mol. Immu- nol., 2014, 58, 50-55. open in new tab
  68. Volkova, A.; Shadrina, M.; Kolomin, T.; Andreeva, L.; Limborska, S.; Myasoedov, N.; Stominsky, P. Selank ad- ministration affects the expression of some genes involved in GABAergic neurotransmission. Front. Pharmacol., 2016, 7, DOI: 10.3389/fphar.2016.00031. open in new tab
  69. Wong, E.; Bennett, S.; Lawrence, B.; Fauconnier, T.; Lu, L.F.L.; Bell, R.A.; Thornback, J.R.; Eshima, D. Tuftsin re- ceptor-binding peptide labeled with technetium: chemistry and preliminary in vitro receptor-binding study. Inorg. Chem., 2001, 40, 5695-5700. open in new tab
  70. Bump, N.J.; James, L.; Wleklik, M.; Reichler, J.; Najjar, V.A. Isolation and subunit composition of tuftsin receptor. Proc. Natl. Acad Sci. USA, 1986, 83, 7187-7191. open in new tab
  71. Bump, N.J.; Najjar, V.A.; Reichler, J. The characteristics of purified HL60 tuftsin receptors. Mol. Cell. Biochem., 1990, 92, 77-84. open in new tab
  72. Paul, C.; Peers, S.H.; Woodhouse, S.H.; Thornback, J.R.; Goodbody, A.E.; Bolton, C. The detection and quantitation of inflammation in the central nervous system during ex- perimental allergic encephalomyelitis using the radiophar- maceutical Tc-99m-RP128. J. Neurosci. Methods, 2000, 98, 83-90. open in new tab
  73. Caveliers, V.; Goodbody, A.E.; Tran, L.L.; S.H. Peers, J.R. Thornback, A. Bossuyt, Evaluation of 99mTc-RP128 as a potential inflammation imaging agent: human dosimetry and first clinical results. J. Nucl. Med., 2001, 42, 154-161.
  74. An, Y.; Li, L.; Yang, D.; Jia, N.; Xu, Ch.; Wang, Q.; Wang, S.; Yuan S. Anticancer activity of tuftsin-derived T peptide in postoperative residual tumors. Anticancer Drugs, 2014, 25, 857-867. open in new tab
  75. Gao, Y-L.; Chai, Y-F.; Dong, N.; Han, S.; Zhu, X-M.; Zhang, Q-H.; Yao, Y-M. Tuftsin-derived T-peptide pre- vents cellular immunosuppression and improves survival rate in septic mice. Scientific Rep., 2015, 5, 16725. open in new tab
  76. Gao, Y-L.; Yu, M-M.; Shou, S-T.; Yao, Y.; Liu, Y-C.; Wang, L-J.; Lu, B.; Chai, Y-F. Tuftsin prevents the nega- tive immunoregulation of neuropilin-1 high open in new tab
  77. CD4+CD25+Regulatory T cells and improves survival rate in septic mice. Oncotarget, 2016, 7, 81791-81805. open in new tab
  78. Wardowska, A.; Dzierzbicka, K.; Szaryńska, M.; Dąbrowska-Szponar, M.; Wiśniewska, K.; Myśliwski, A.; Trzonkowski, P. Analogues of muramyl dipeptide (MDP) and tuftsin limit infection and inflammation in murine model of sepsis. Vaccine, 2009, 27, 369-374. open in new tab
  79. Wardowska, A.; Dzierzbicka, K.; Menderska, A.; Trzonk- owski, P. New conjugates of tuftsin and muramyl dipeptide as stimulators of human monocyte-derived dendritic cells. Protein Pept. Lett., 2013, 20, 200-204. open in new tab
  80. Dzierzbicka, K. Synthesis of conjugates of muramyl dipep- tide and nor-muramyl dipeptide with retro-tuftsin (Arg-Pro- Lys-ThrOMe) as potential immunostimulants. Pol. J. Chem., 2004, 78, 409-416.
  81. Jiang, X.; Yu, M.; Qiao, X.; Liu, M.; Tang, L.; Jiang, Y.; Cui, W.; Li, Y. Up-regulation of MDP and tuftsin gene ex- pression in Th1 and Th17 cells as an adjuvant for an oral Lactobacillus casei vaccine against anti-transmissible gas- troenteritis virus. Appl. Microbiol. Biotechnol., 2014, 98, 8301-8312. open in new tab
  82. Horvati, K.; Bacsa, B.; Szabo, N.; David, S.; Mezo, G.; Grolmusz, V.; Vertessy, B.; Hudecz, F.; Bosze, S. En- hanced cellular uptake of a new, in silico identified antitu- bercular candidate by peptide conjugation. Bioconjug. Chem., 2012, 23, 900-907. open in new tab
  83. Horvati, K.; Bacsa, B.; Kiss, E.; Gyulai, G.; Fodor, K.; Balka, G.; Rusvai, M.; Szabo, E.; Hudecz, F.; Bosze, Sz. Nanoparticle encapsulated lipopeptide conjugate of antitu- bercular drug isoniazid: in vitro intracellular activity and in vivo efficacy in a guinea pig model of tuberculosis. Biocon- jug. Chem., 2014, 25, 2260−2268. open in new tab
  84. Khan, M.A.; Aljarbou, A.; Khan, A.; Owais, M. Immune stimulating and therapeutic potential of tuftsin-incorporated nystatin liposomes against Cryptococcus neoformans in leukopenic BALB/C mice. FEMS Immunol. Med. Micro- biol., 2012, 66, 88-97. open in new tab
  85. Gupta, C.M.; Haq, W.; Tuftsin-bearing liposomes as antibi- otic carriers in treatment of macrophage infections. Methods Enzymol., 2005, 391, 291-301. open in new tab
  86. Agrawal, A.K.; Agrawal, A.; Pal, A.; Guru, P.Y.; Gupta, C.M. Superior chemotherapeutic efficacy of amphotericin B in tuftsin-bearing liposmoes against Leishmania donovani infections in hamsters. J. Drug Target., 2002, 10, 41-45. open in new tab
  87. Shakya, N.; Sane, S.A.; Haq, W.; Gupta, S. Augmentation of antileishmanial efficacy of miltefosine in combination with tuftsin against experimental visceral leishmaniasis. Parasitol. Res., 2012, 111, 563-570. open in new tab
Verified by:
Gdańsk University of Technology

seen 132 times

Recommended for you

Meta Tags