Abstract
Predictive maintenance (PdM) is a type of approach for maintenance processes, allowing maintenance actions to be managed depending on the machine's current condition. Maintenance is therefore carried out before failures occur. The approach doesn’t only help avoid abrupt failures but also helps lower maintenance cost and provides possibilities to manufacturers to manage maintenance budgets in a more efficient way. A new deep neural network (DNN) architecture proposed in this study intends to bring a different approach to the predictive maintenance domain. There is an input layer in this architecture, a Long-Short term memory (LSTM) layer, a dropout layer (DO) followed by an LSTM layer, a hidden layer, and an output layer. The number of epochs used in the architecture and the batch size was determined using the Genetic Algorithm (GA). The activation function used after the output layer, DO ratio, and optimization algorithm optimizes loss function determined by using grid search (GS). This approach brings a different perspective to the literature for finding optimum parameters of LSTM. The neural network and hyperparameter optimization approach proposed in this study performs much better than existent studies regarding LSTM network usage for predictive maintenance purposes
Citations
-
7
CrossRef
-
0
Web of Science
-
7
Scopus
Authors (2)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Gazi University Journal of Science
no. 35,
pages 1200 - 1210,
ISSN: 1303-9709 - Language:
- English
- Publication year:
- 2022
- Bibliographic description:
- Erpolat Tasabat S., Aydin O.: Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition// Gazi University Journal of Science -Vol. 35,iss. 3 (2022), s.1200-1210
- DOI:
- Digital Object Identifier (open in new tab) 10.35378/gujs.937169
- Verified by:
- Gdańsk University of Technology
seen 131 times
Recommended for you
Using LSTM networks to predict engine condition on large scale data processing framework
- O. Aydin,
- S. Guldamlasioglu
Constrained aerodynamic shape optimization using neural networks and sequential sampling
- P. Koratikere,
- L. Leifsson,
- S. Kozieł
- + 1 authors