Search results for: NOISE PROFILING - Bridge of Knowledge

Search

Search results for: NOISE PROFILING

Filters

total: 3

clear all filters


Chosen catalog filters

  • Category

  • Year

  • Options

clear Chosen catalog filters disabled

Search results for: NOISE PROFILING

  • Noise profiling for speech enhancement employing machine learning models

    Publication

    - Journal of the Acoustical Society of America - Year 2022

    This paper aims to propose a noise profiling method that can be performed in near real-time based on machine learning (ML). To address challenges related to noise profiling effectively, we start with a critical review of the literature background. Then, we outline the experiment performed consisting of two parts. The first part concerns the noise recognition model built upon several baseline classifiers and noise signal features...

    Full text available to download

  • Improvement of speech intelligibility in the presence of noise interference using the Lombard effect and an automatic noise interference profiling based on deep learning

    Publication
    • K. Kąkol

    - Year 2023

    The Lombard effect is a phenomenon that results in speech intelligibility improvement when applied to noise. There are many distinctive features of Lombard speech that were recalled in this dissertation. This work proposes the creation of a system capable of improving speech quality and intelligibility in real-time measured by objective metrics and subjective tests. This system consists of three main components: speech type detection,...

    Full text available to download

  • Applying the Lombard Effect to Speech-in-Noise Communication

    Publication

    - Electronics - Year 2023

    This study explored how the Lombard effect, a natural or artificial increase in speech loudness in noisy environments, can improve speech-in-noise communication. This study consisted of several experiments that measured the impact of different types of noise on synthesizing the Lombard effect. The main steps were as follows: first, a dataset of speech samples with and without the Lombard effect was collected in a controlled setting;...

    Full text available to download