Search results for: MOLECULAR DYNAMICS
-
In silico approaches for better understanding cysteine cathepsin-glycosaminoglycan interactions
PublicationCysteine cathepsins constitute the largest cathepsin family, with 11 proteases in human that are present primarily within acidic endosomal and lysosomal compartments. They are involved in the turnover of intracellular and extracellular proteins. They are synthesized as inactive procathepsins that are converted to mature active forms. Cathepsins play important roles in physiological and pathological processes and, therefore, receive...
-
How acidic amino acid residues facilitate DNA target site selection
PublicationDespite the negative charge of the DNA backbone, acidic residues (Asp/Glu) commonly participate in the base readout, with a strong preference for cytosine. In fact, in the solved DNA/protein structures, cytosine is recognized almost exclusively by Asp/Glu through a direct hydrogen bond, while at the same time, adenine, regardless of its amino group, shows no propensity for Asp/Glu. Here, we analyzed the contribution of Asp/Glu...
-
Molecular mechanism and energetics of coupling between substrate binding and product release in the F 1 -ATPase catalytic cycle
PublicationF1-ATPase is a motor protein that couples the rotation of its rotary γ subunit with ATP synthesis or hydrolysis. Single-molecule experiments indicate that nucleotide binding and release events occur almost simultaneously during the synthesis cycle, allowing the energy gain due to spontaneous binding of ADP to one catalytic β subunit to be directly harnessed for driving the release of ATP from another rather than being dissipated...
-
Antibiotic-sterol interactions provide insight into the selectivity of natural aromatic analogues of amphotericin B and their photoisomers
PublicationAromatic heptaene macrolides (AHMs) belong to the group of polyene macrolide antifungal antibiotics. Members of this group were the first to be used in the treatment of systemic fungal infections. Amphotericin B (AmB), a non-aromatic representative of heptaene macrolides, is of significant clinical importance in the treatment of internal mycoses. It includes the all-trans heptaene chromophore, whereas the native AHMs contain two...
-
The interactions of monomeric acridines and unsymmetrical bisacridines (UAs) with DNA duplexes: an insight provided by NMR and MD studies
PublicationMembers of a novel class of anticancer compounds, exhibiting high antitumor activity, i.e. the unsymmetrical bisacridines (UAs), consist of two heteroaromatic ring systems. One of the ring systems is an imidazoacridinone moiety, with the skeleton identical to the structural base of Symadex. The second one is a 1-nitroacridine moiety, hence it may be regarded as Nitracrine’s structural basis. These monoacridine units are connected...
-
Homogeneous nucleation rate of methane hydrate formation under experimental conditions from seeding simulations
PublicationIn this work, we shall estimate via computer simulations the homogeneous nucleation rate for the methane hydrate at 400 bars for a supercooling of about 35 K. The TIP4P/ICE model and a Lennard-Jones center were used for water and methane, respectively. To estimate the nucleation rate, the seeding technique was employed. Clusters of the methane hydrate of different sizes were inserted into the aqueous phase of a two-phase gas–liquid...
-
Solubility of carbon dioxide in water: Some useful results for hydrate nucleation
PublicationIn this paper, the solubility of carbon dioxide (CO2) in water along the isobar of 400 bar is determined by computer simulations using the well-known TIP4P/Ice force field for water and the TraPPE model for CO2. In particular, the solubility of CO2 in water when in contact with the CO2 liquid phase and the solubility of CO2 in water when in contact with the hydrate have been determined. The solubility of CO2 in a liquid–liquid...
-
Effect of osmolytes of different type on DNA behavior in aqueous solution. Experimental and theoretical studies
PublicationOsmolytes, the small organic molecules accumulated in cells under environmental stress, can modulate the stability of biopolymers such as proteins and DNA. In spite of many years of research, there is no established molecular mechanism of the influence of osmolytes on DNA structure. Here, we used two model osmolytes that denature (urea) or stabilize (trimethylglycine, TMG) proteins to study their effect on DNA in aqueous solutions...
-
Fractional Calculus Evaluation of Hyaluronic Acid Crosslinking in a Nanoscopic Part of Articular Cartilage Model System
PublicationThis work presents a study of the mechanism of physical crosslinking of hyaluronic acid in the presence of common phospholipids in synovial joint organ systems. Molecular dynamic simulations have been executed to understand the formation of hyaluronan networks at various phospholipid concentrations. The results of the simulations suggest that the mechanisms exhibit subdiffusion characteristics. Transportation quantities derive...
-
How water mediates the long-range interactions between remote protein molecules
PublicationThe high crowding of macromolecules in the cytoplasm affects the processes that occur inside a living cell. It can, for example, promote the forming of various loosely connected structures of proteins. It also means that bulk water is, essentially, not present there. The relatively thin layer of solvent that separates macromolecules may be able to participate in the long-range interactions between them and make them respond to...
-
Water-mediated influence of a crowded environment on internal vibrations of a protein molecule
PublicationThe influence of crowding on the protein inner dynamics is examined by putting a single protein molecule close to one or two neighboring protein molecules. The presence of additional molecules influences the amplitudes of protein fluctuations. Also, a weak dynamical coupling of collective velocities of surface atoms of proteins separated by a layer of water is detected. The possible mechanisms of these phenomena are described....
-
Organic solvents aggregating and shaping structural folding of protein, a case study of the protease enzyme
PublicationLow solubility of reactants or products in aqueous solutions can result in the enzymatic catalytic reactions that can occur in non-aqueous solutions. In current study we investigated aqueous solutions containing different organic solvents / deep eutectic solvents (DESs) that can influence the protease enzyme's activity, structural, and thermal stabilities. Retroviral aspartic protease enzyme is responsible for the cleavage of the...
-
Michał Jurkowski
People -
Przemysław Domański
People