Search results for: ACOUSTIC COOLING
-
Interaction of Acoustic and Thermal Modes in the Vibrationally Relaxing Gases. Acoustic Cooling
PublicationThe dynamic equation which governs an excess temperature associated with the thermal mode in vibrationally relaxing gas is derived. The nonlinear transfer of acoustic energy to the energy of the thermal mode in a relaxing gas causes slow variation of temperature with time. The nal dynamic equation is instantaneous. All types of sound, including aperiodic, may be considered as an acoustic source of corresponding heating or cooling....
-
Interaction of Acoustic and Thermal Modes in the Gas with Nonequilibrium Chemical Reactions: Possibilities of Acoustic Cooling
PublicationNonlinear generation of thermal mode during propagation of dominative sound in a chemically reacting gas is considered. The dynamic equation of excess temperature associated with the thermal mode is derived. It is instantaneous and includes quadratic nonlinear acoustic source reflecting the nonlinear character of interaction between acoustic and non-acoustic types of gas motion. Both periodic and aperiodic sound may be considered...
-
Standing Waves and Acoustic Heating (or Cooling) in Resonators Filled with Chemically Reacting Gas
PublicationStanding waves and acoustic heating in a one-dimensional resonator filled with chemically reacting gas, is the subject of investigation. The chemical reaction of A ! B type, which takes place in a gas, may be reversible or not. Governing equations for the sound and entropy mode which is generated in the field of sound are derived by use of a special mathematical method. Under some conditions, sound waves propagating in opposite...
-
Acoustic field and the entropy mode induced by it in a waveguide filled with some non-equilibrium gases
PublicationThe non-linear propagation of an acoustic beam in a rectangular waveguide is considered. The medium of sound propagation, is a gas where thermodynamically non-equilibrium processes take place: such as exothermic chemical reactions or excitation of vibrational degrees of a molecule’s freedom. The incident and reflected compounds of the acoustic field do not interact in the leading order in the case of periodic weakly nonlinear sound...
-
Standing Acoustic Waves and Relative Nonlinear Phenomena in a Vibrationally Relaxing Gas-Filled Resonator
PublicationStanding acoustic waves in one-dimensional resonator filled with vibrationally relaxing gas, are studied. Two regimes of excitation of molecular vibrational degrees of freedom are considered, equilibrium and nonequilibrium. The acoustic energy enlarges with time in the non-equilibrium regime and decreases otherwise before formation of discontinuity. After that, it decreases due to nonlinear absorption and tends to zero in equilibrium...
-
Nonlinear generation of non-acoustic modes by low-frequency sound in a vibrationally relaxing gas
PublicationTwo dynamic equations referring to a weakly nonlinear and weakly dispersive flow of a gas in which molecular vibrational relaxation takes place. are derived. The first one governs an excess temperature associated with the thermal mode, and the second one describes variations in vibrational energy. Both quantities refer to non-wave types of gas motion. These variations are caused by the nonlinear transfer of acoustic energy into...
-
Thermal Self-Action Effects of Acoustic Beam in a Gas with Reversible or Irreversible Chemical Reaction
PublicationThermal self-action of acoustic beam in a gas where an exothermic chemical reaction takes place, is studied. This kind of thermal self-action differs from that in a newtonian fluid. In dependence on the type of a chemical reaction, reversible or not, heating or cooling of a medium occurs. A beam in the case of the irreversible reaction may be unusually self-focusing. The self-action effects relating to wave beams containing shock...
-
Thermal self-action effects of acoustic beam in a vibrationally relaxing gas
PublicationThermal self-action of acoustic beam in a molecular gas with excited internal degrees of molecules’ freedom, is studied. This kind of thermal self-action differs from that in a Newtonian fluid. Heating or cooling of a medium takes place due to transfer of internal vibrational energy. Equilibrium and non-equilibrium gases, which may be acoustically active, are considered. A beam in an acoustically active gas is self-focusing unlike...
-
Standing Waves in a Rectangular Resonator Containing Acoustically Active Gases
PublicationThe distribution of perturbations of pressure and velocity in a rectangular resonator is considered. A resonator contains a gas where thermodynamic processes take place, such as exothermic chemical reaction or excitation of vibrational degrees of a molecule’s freedom. These processes make the gas acoustically active under some conditions. We conclude that the incident and reflected compounds of a sound beam do not interact in the...
-
Instantaneous Heating and Cooling Caused by Periodic or Aperiodic Sound of Any Characteristic Duration in a Gas with Vibrational Relaxation
PublicationThermodynamic relaxation of internal degrees of a molecule's freedom in a gas occurs with some characteristic time. This makes wave processes in a gas behave differently depending on the ratio of characteristic duration of perturbations and the relaxation time. In particular, generation of the secondary non-wave modes by intense sound in a nonlinear flow dependens on frequency. These kinds of interaction are considered in this...