Search results for: MESH MORPHING
-
Local mesh morphing technique for parametrized macromodels in the finite element method
PublicationThis paper presents a novel approach for enhancing the efficiency of the design process of microwave devices by means of the finite element method. It combines mesh morphing with local model order reduction (MOR) and yields parametrized macromodels that can be used to significantly reduce the number of variables in the FEM system of equations and acceleration of computer simulation. A projection basis for local reduction is generated...
-
Methodology of generation of CFD meshes and 4D shape reconstruction of coronary arteries from patient-specific dynamic CT
PublicationDue to the difficulties in retrieving both the time‑dependent shapes of the vessels and the generation of numerical meshes for such cases, most of the simulations of blood flow in the cardiac arteries use static geometry. The article describes a methodology for generating a sequence of time‑dependent 3D shapes based on images of different resolutions and qualities acquired from ECG‑gated coronary artery CT angiography. The precision...
-
Electromagnetic Simulation with 3D FEM for Design Automation in 5G Era
PublicationElectromagnetic simulation and electronic design automation (EDA) play an important role in the design of 5G antennas and radio chips. The simulation challenges include electromagnetic effects and long simulation time and this paper focuses on simulation software based on finite-element method (FEM). The state-of-the-art EDA software using novel computational techniques based on FEM can not only accelerate numerical analysis, but...
-
A Mesh Deformation Technique Based on Solid Mechanics for Parametric Analysis of High-Frequency Devices With 3-D FEM
PublicationIn this paper, a versatile technique for mesh defor- mation is discussed, targeted at the electromagnetic (EM) field simulation of high-frequency devices using the 3-D finite element method (FEM). The approach proposed applies a linear elasticity model to compute the displacements of the internal mesh nodes in 3-D when the structure geometry is changed. The technique is compared with an alternative approach...
-
GPU-Accelerated 3D Mesh Deformation for Optimization Based on the Finite Element Method
PublicationThis paper discusses a strategy for speeding up the mesh deformation process in the design-byoptimization of high-frequency components involving electromagnetic field simulations using the 3D finite element method (FEM). The mesh deformation is assumed to be described by a linear elasticity model of a rigid body; therefore, each time the shape of the device is changed, an auxiliary elasticity finite-element problem must be solved....