Search results for: MINIATURIZED FILTER
-
Miniaturized Dual-Band Bandpass Filter with Wide Inter Stopband for 5G Applications
PublicationThis article presents the design of a miniaturized dual-band bandpass filter with a wide inter-stopband and improved isolation. A novel topology comprising the series connection of shunt cascaded coupled lines and quarter-wavelength open stubs is proposed to realize the dual-band filter along with half-wavelength stepped-impedance stubs. The circuit characteristics contain nine transmission zeros and four poles. The transmission...
-
Miniaturized bandpass substrate integrated waveguide filter with frequency-dependent coupling realized using asymmetric GCPW discontinuity
PublicationAn asymmetric GCPW discontinuity is proposed to provide frequency-dependent coupling in microwave bandpass filters. Wider and narrow sections introduce, respectively, the capacitive and inductive component to the equivalent circuit representing coupling. By selecting the dimensions of the discontinuity and width of the inductive window in substrate integrated waveguide, an additional transmission zero can be introduced at prescribed...
-
Highly-Miniaturized Dual-Mode Bandpass Filter Based on Quarter-Mode Substrate Integrated Waveguide with Wide Stopband
PublicationThis paper presents a novel design of a highly-miniaturized dual-mode bandpass filter (BPF) employing a quarter-mode substrate integrated waveguide (QMSIW). The QMSIW resonator is based on a square cavity with metallic vias along two sides, and open-ended edges at the remaining sides that contain orthogonal feed lines. An open slot is introduced along the two sides of the square cavity with metallic vias to form a magnetic wall....
-
Improved selectivity compact band-stop filter with gosper fractal-shaped defected ground structures
PublicationA novel band-stop filter using Gosper fractal-shaped defected ground structures has been designed and manufactured. The improvement in the filter selectivity has been achieved by introducing a multiresonance fractal-shaped defect leading to a higher filter order, simultaneously maintaining its compact size. The experimental results prove the validity of proposed solution and its utility in novel miniaturized and severe requirement...
-
Miniaturized Inline Bandpass Filters Based on Triple-Mode Integrated Coaxial-Waveguide Resonators
PublicationThis work presents a design technique to implement miniaturized cross-coupled bandpass filters in inline physical configurations based on triple-mode resonators. Triple-mode resonances are obtained by using integrated coaxial-waveguide cavity resonators. They consist of two coaxial conducting posts placed in the sidewalls of a rectangular waveguide cavity. In the proposed triplet, a transmission zero (TZ) can be positioned at any...
-
Rapid design closure of microwave components by means of feature-based optimization and adjoint sensitivities
PublicationIn this article, fast design closure of microwave components using feature-based optimization (FBO) and adjoint sensitivities is discussed. FBO is one of the most recent optimization techniques that exploits a particular structure of the system response to “flatten” the functional landscape handled during the optimization process, which leads to reducing its computational complexity. When combined with gradient-based search involving...
-
Optimization-Based Robustness Enhancement of Compact Microwave Component Designs with Response Feature Regression Surrogates
PublicationThe ability to evaluate the effects of fabrication tolerances and other types of uncertainties is a critical part of microwave design process. Improving the immunity of the device to parameter deviations is equally important, especially when the performance specifications are stringent and can barely be met even assuming a perfect manufacturing process. In the case of modern miniaturized microwave components of complex topologies,...
-
Rapid Microwave Design Optimization in Frequency Domain Using Adaptive Response Scaling
PublicationIn this paper, a novel methodology for cost-efficient microwave design optimization in the frequency domain is proposed. Our technique, referred to as adaptive response scaling (ARS), has been developed for constructing a fast replacement model (surrogate) of the high-fidelity electromagnetic-simulated model of the microwave structure under design using its equivalent circuit (low-fidelity model). The basic principle of ARS is...