Search results for: THRESHOLDING STRATEGIES
-
Thresholding Strategies for Large Scale Multi-Label Text Classifier
PublicationThis article presents an overview of thresholding methods for labeling objects given a list of candidate classes’ scores. These methods are essential to multi-label classification tasks, especially when there are a lot of classes which are organized in a hierarchy. Presented techniques are evaluated using the state-of-the-art dedicated classifier on medium scale text corpora extracted from Wikipedia. Obtained results show that the...
-
From Scores to Predictions in Multi-Label Classification: Neural Thresholding Strategies
PublicationIn this paper, we propose a novel approach for obtaining predictions from per-class scores to improve the accuracy of multi-label classification systems. In a multi-label classification task, the expected output is a set of predicted labels per each testing sample. Typically, these predictions are calculated by implicit or explicit thresholding of per-class real-valued scores: classes with scores exceeding a given threshold value...