Filters
total: 11
Search results for: meniscal extrusion
-
Proximal fibular osteotomy as a treatment for degenerative meniscal extrusion
PublicationMeniscal extrusion treatment is a key focus area for research and clinical study of degenerative knee pathology. The contact forces between the meniscus and the bones cause external displacements of the meniscus that are resisted by the circumferential fibres. The main risk factors for the excessive deformation of the meniscus are meniscal root tears, disruption of the circumferential fibres, knee malalignment and high body mass...
-
High meniscal slope angle as a risk factor for meniscal allograft extrusion
PublicationA meniscal graft extrusion is still an unresolved problem that affects most patients after a meniscal transplantation. Despite the advances in surgical techniques, together with the improved methods for a meniscal allograft sizing, success is only observed in up to 75% of patients after they experience a meniscal allograft transplantation. Because a meniscal extrusion is associated with a cartilage deterioration and the progression...
-
The influence of a change in the meniscus cross-sectional shape on the medio-lateral translation of the knee joint and meniscal extrusion
PublicationObjective The purpose of this study was to evaluate the influence of a change in the meniscus cross sectional shape on its position and on the biomechanics of a knee joint. Methods One main finite element model of a left knee joint was created on the basis of MRI images. The model consisted of bones, articular cartilages, menisci and ligaments. Eight variants of this model with an increased or decreased meniscus height were then...
-
The Influence of Articular Cartilage Thickness Reduction on Meniscus Biomechanics
PublicationObjective Evaluation of the biomechanical interaction between meniscus and cartilage in medial compartment knee osteoarthritis. Methods The finite element method was used to simulate knee joint contact mechanics. Three knee models were created on the basis of knee geometry from the Open Knee project. We reduced the thickness of medial cartilages in the intact knee model by approximately 50% to obtain a medial knee osteoarthritis...
-
Biomechanics of the medial meniscus in the osteoarthritic knee joint
PublicationBackground. Increased mechanical loading and pathological response of joint tissue to the abnormal mechanical stress can cause degradation of cartilage characteristic of knee osteoarthritis (OA). Despite osteoarthritis is risk factor for the development of meniscal lesions the mechanism of degenerative meniscal lesions is still unclear. Therefore, the aim of the study is to investigate the influence of medial compartment knee OA...
-
Influence of meniscus shape in the cross sectional plane on the knee contact mechanics
PublicationWe present a three dimensional finite element analysis of stress distribution and menisci deformation in the human knee joint. The study is based on the Open Knee model with the geometry of the lateral meniscus which shows some degenerative disorders. The nonlinear analysis of the knee joint under compressive axial load is performed. We present results for intact knee, knee with partial and complete radial posterior meniscus root...
-
Assessment of the Relationship between the Shape of the Lateral Meniscus and the Risk of Extrusion Based on MRI Examination of the Knee Joint
PublicationBackground Meniscus extrusion is a serious and relatively frequent clinical problem. For this reason the role of different risk factors for this pathology is still the subject of debate. The goal of this study was to verify the results of previous theoretical work, based on the mathematical models, regarding a relationship between the cross-section shape of the meniscus and the risk of its extrusion. Materials and Methods Knee...
-
3D knee model G with reduced thickness of articular cartilage - input text file for computation
Open Research DataThe finite element method was used to simulate the stance phase of the gait cycle. An intact knee model was prepared based on magnetic resonance scans of the left knee joint of a healthy volunteer. In the model G articular cartilage thickness was reduced in specific areas to simulate degenerative changes in the medial knee osteoarthritis. The file was...
-
3D knee model M with decreased material parameters of the cartilage and menisci - input text file for computation
Open Research DataThe finite element method was used to simulate the stance phase of the gait cycle. An intact knee model was prepared based on magnetic resonance scans of the left knee joint of a healthy volunteer. In the model M the material parameters of cartilage and menisci were reduced to simulate degenerative changes in the medial knee osteoarthritis. The file...
-
3D intact knee model used in analysis of the medial meniscus biomechanics in the osteoarthritic knee joint - input text file for computation
Open Research DataThe finite element method was used to simulate the stance phase of the gait cycle. An intact knee model with original geometry and material parametetrs was prepared based on magnetic resonance scans of the left knee joint of a healthy volunteer. The file was created in Abaqus 6.14-2, but can be read in a text editor.
-
3D model of osteoarthritic (OA) knee joint for analysis of the medial meniscus biomechanics - input text file for computation
Open Research DataThe finite element method was used to simulate the stance phase of the gait cycle. An intact knee model was prepared based on magnetic resonance scans of the left knee joint of a healthy volunteer. In the OA model thickness of articular cartilage and material parameters of the cartilage and menisci were reduced to simulate degenerative changes in the...