Cost-Efficient Multi-Objective Design of Miniaturized Microwave Circuits Using Machine Learning and Artificial Neural Network
Abstrakt
Designing microwave components involves managing multiple objectives such as center frequencies, impedance matching, and size reduction for miniaturized structures. Traditional multi-objective optimization (MO) approaches heavily rely on computationally expensive population-based methods, especially when exe-cuted with full-wave electromagnetic (EM) analysis to guarantee reliability. This paper introduces a novel and cost-effective MO technique for microwave passive components utilizing a machine learning (ML) framework with artificial neural network (ANN) surrogates as the primary prediction tool. In this approach, mul-tiple candidate solutions are extracted from the Pareto set via optimization using a multi-objective evolutionary algorithm (MOEA) applied to the current ANN model. These solutions expand the dataset of available (EM-simulated) parameter vectors and refine the surrogate model iteratively. To enhance computational effi-ciency, we employ variable-resolution EM models. Tested on two microstrip cir-cuits, our methodology competes effectively against several surrogate-based ap-proaches. The average computational cost of the algorithm is below three hundred EM analyses of the circuit, with the quality of generated Pareto sets surpassing those produced by the benchmark methods.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (3)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Kozieł S., Pietrenko-Dąbrowska A., Leifsson L.: Cost-Efficient Multi-Objective Design of Miniaturized Microwave Circuits Using Machine Learning and Artificial Neural Network// / : , 2024,
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-031-63775-9_1
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 38 razy