Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning - Publikacja - MOST Wiedzy

Wyszukiwarka

Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning

Abstrakt

In this work, a computationally efficient method based on data driven surrogate models is pro-posed for the design optimization procedure of a Frequency Selective Surface (FSS)-based filtering antenna (Filtenna). A Filtenna acts as a as module that simultaneously pre-filters unwanted sig-nals, and enhances the desired signals at the operating frequency. However, due to a typically large number of design variables of FSS unit elements, and their complex interrelations affecting the scattering response, FSS optimization is a challenging task. Herein, a deep-learning-based al-gorithm, Modified-Multi-Layer-Perceptron (M2LP), is developed to render an accurate behavioral model of the unit cell. Subsequently, the M2LP model is applied to optimize FSS elements being parts of the Filtenna under design. The exemplary device operates at 5 GHz to 7 GHz band. The numerical results demonstrate that the presented approach allows for almost 90% reduction of the computational cost of the optimization process as compared to direct EM-driven design. At the same time, physical measurements of the fabricated Filtenna prototype corroborate the relevance of the proposed methodology. One of the important advantages of our technique is that the unit cell model can be re-used to design FSS and Filtenna operating a various operating bands without incurring any extra computational expenses.

Cytowania

  • 1 2

    CrossRef

  • 0

    Web of Science

  • 1 5

    Scopus

Autorzy (6)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Electronics nr 12,
ISSN: 2079-9292
Język:
angielski
Rok wydania:
2023
Opis bibliograficzny:
Mahouti P., Belen A., Tari O., Belen M., Karahan S., Kozieł S.: Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning// Electronics -Vol. 12,iss. 7 (2023), s.1584-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/electronics12071584
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 95 razy

Publikacje, które mogą cię zainteresować

Meta Tagi