Parity vertex colouring of graphs - Publikacja - MOST Wiedzy

Wyszukiwarka

Parity vertex colouring of graphs

Abstrakt

A parity path in a vertex colouring of a graph is a path along which each colour is used an even number of times. Let Xp(G) be the least number of colours in a proper vertex colouring of G having no parity path. It is proved that for any graph G we have the following tight bounds X(G) <= Xp(G) <=|V(G)|− a(G)+1, where X(G) and a(G) are the chromatic number and the independence number of G, respectively. The bounds are improved for trees. Namely, if T is a tree with diameter diam(T) and radius rad(T), then ceil(log2(2+diam(T))) <= Xp(T) <= 1+rad(T). Both bounds are tight. The second thread of this paper is devoted to relationships between parity vertex colourings and vertex rankings, i.e. a proper vertex colourings with the property that each path between two vertices of the same colour q contains a vertex of colour greater than q. New results on graphs critical for vertex rankings are also presented.

Cytowania

  • 3

    CrossRef

  • 0

    Web of Science

  • 7

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Opublikowano w:
Discussiones Mathematicae Graph Theory nr 31, strony 183 - 195,
ISSN: 1234-3099
Język:
angielski
Rok wydania:
2011
Opis bibliograficzny:
Borowiecki P., Budajova K., Jendrol S., Krajci S.: Parity vertex colouring of graphs// Discussiones Mathematicae Graph Theory. -Vol. 31., iss. Iss 1 (2011), s.183-195
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.7151/dmgt.1537
Weryfikacja:
Politechnika Gdańska

wyświetlono 141 razy

Publikacje, które mogą cię zainteresować

Meta Tagi