mgr inż. Arkadiusz Kwasigroch
Publications
Filters
total: 21
Catalog Publications
Year 2024
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublicationW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
Year 2023
-
Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach
PublicationBreast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private...
-
Interpretable deep learning approach for classification of breast cancer - a comparative analysis of multiple instance learning models
PublicationBreast cancer is the most frequent female cancer. Its early diagnosis increases the chances of a complete cure for the patient. Suitably designed deep learning algorithms can be an excellent tool for quick screening analysis and support radiologists and oncologists in diagnosing breast cancer.The design of a deep learning-based system for automated breast cancer diagnosis is not easy due to the lack of annotated data, especially...
Year 2022
-
Deep learning-based waste detection in natural and urban environments
PublicationWaste pollution is one of the most significant environmental issues in the modern world. The importance of recycling is well known, both for economic and ecological reasons, and the industry demands high efficiency. Current studies towards automatic waste detection are hardly comparable due to the lack of benchmarks and widely accepted standards regarding the used metrics and data. Those problems are addressed in this article by...
-
Trustworthy Applications of ML Algorithms in Medicine - Discussion and Preliminary Results for a Problem of Small Vessels Disease Diagnosis.
PublicationML algorithms are very effective tools for medical data analyzing, especially at image recognition. Although they cannot be considered as a stand-alone diagnostic tool, because it is a black-box, it can certainly be a medical support that minimize negative effect of human-factors. In high-risk domains, not only the correct diagnosis is important, but also the reasoning behind it. Therefore, it is important to focus on trustworthiness...
Year 2021
-
A Comprehensive Analysis of Deep Neural-Based Cerebral Microbleeds Detection System
PublicationMachine learning-based systems are gaining interest in the field of medicine, mostly in medical imaging and diagnosis. In this paper, we address the problem of automatic cerebral microbleeds (CMB) detection in magnetic resonance images. It is challenging due to difficulty in distinguishing a true CMB from its mimics, however, if successfully solved it would streamline the radiologists work. To deal with this complex three-dimensional...
-
TOWARDS EXPLAINABLE CLASSIFIERS USING THE COUNTERFACTUAL APPROACH - GLOBAL EXPLANATIONS FOR DISCOVERING BIAS IN DATA
PublicationThe paper proposes summarized attribution-based post-hoc explanations for the detection and identification of bias in data. A global explanation is proposed, and a step-by-step framework on how to detect and test bias is introduced. Since removing unwanted bias is often a complicated and tremendous task, it is automatically inserted, instead. Then, the bias is evaluated with the proposed counterfactual approach. The obtained results...
Year 2020
-
Neural Architecture Search for Skin Lesion Classification
PublicationDeep neural networks have achieved great success in many domains. However, successful deployment of such systems is determined by proper manual selection of the neural architecture. This is a tedious and time-consuming process that requires expert knowledge. Different tasks need very different architectures to obtain satisfactory results. The group of methods called the neural architecture search (NAS) helps to find effective architecture...
-
Self-Supervised Learning to Increase the Performance of Skin Lesion Classification
PublicationTo successfully train a deep neural network, a large amount of human-labeled data is required. Unfortunately, in many areas, collecting and labeling data is a difficult and tedious task. Several ways have been developed to mitigate the problem associated with the shortage of data, the most common of which is transfer learning. However, in many cases, the use of transfer learning as the only remedy is insufficient. In this study,...
Year 2019
-
Deep neural network architecture search using network morphism
PublicationThe paper presents the results of the research on neural architecture search (NAS) algorithm. We utilized the hill climbing algorithm to search for well-performing structures of deep convolutional neural network. Moreover, we used the function preserving transformations which enabled the effective operation of the algorithm in a short period of time. The network obtained with the advantage of NAS was validated on skin lesion classification...
-
DIAGNOSIS OF MALIGNANT MELANOMA BY NEURAL NETWORK ENSEMBLE-BASED SYSTEM UTILISING HAND-CRAFTED SKIN LESION FEATURES
PublicationMalignant melanomas are the most deadly type of skin cancer but detected early have high chances for successful treatment. In the last twenty years, the interest of automated melanoma recognition detection and classification dynamically increased partially because of public datasets appearing with dermatoscopic images of skin lesions. Automated computer-aided skin cancer detection in dermatoscopic images is a very challenging task...
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublicationIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
Year 2018
-
Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy
PublicationThe diabetic retinopathy is a disease caused by long-standing diabetes. Lack of effective treatment can lead to vision impairment and even irreversible blindness. The disease can be diagnosed by examining digital color fundus photographs of retina. In this paper we propose deep learning approach to automated diabetic retinopathy screening. Deep convolutional neural networks (CNN) - the most popular kind of deep learning algorithms...
-
Diagnozowanie stanu retinopatii cukrzycowej przy pomocy głębokich sieci neuronowych
PublicationW referacie opisano problem wykrywania oraz klasyfikacji stanu retinopatii cukrzycowej ze zdjęć dna oka przy pomocy głębokich sieci neuronowych. Retinopatia cukrzycowa jest chorobą oczu często występującą u osób z cukrzycą. Nieleczona prowadzi do uszkodzenia wzroku, a nawet ślepoty. W pracy badawczej opracowano system wykrywania retinopatii cukrzycowej na podstawie zdjęć dna oka. Opracowana sieć neuronowa przypisuje stan choroby...
-
Optimal selection of input features and an acompanying neural network structure for the classification purposes - skin lesions case study
PublicationMalignant melanomas are the most deadly type of skin cancers however detected early enough give a high chances for successful treatment. The last years saw the dynamic growth of interest of automatic computer-aided skin cancer diagnosis. Every month brings new research results on new approaches to this problem, new methods of preprocessing, new classifiers, new ideas to follow etc. In particular, the rapid development of dermatoscopy,...
-
Rozpoznawanie obiektów przez głębokie sieci neuronowe
PublicationW referacie zaprezentowane zostaną wyniki badań nad rozpoznawaniem obiektów w różnych warunkach za pomocą głębokich sieci neuronowych. Przeanalizowano działanie dwóch struktur – ResNet50 oraz VGG19. Systemy rozpoznawania obrazu wytrenowano oraz przetestowano na reprezentatywnej, bazie zawierającej 25 tys. zdjęć psów oraz kotów, która znacznie upraszcza analizowanie działania systemów ze względu na łatwość interpretacji zdjęć przez...
Year 2017
-
DEEP CONVOLUTIONAL NEURAL NETWORKS AS A DECISION SUPPORT TOOL IN MEDICAL PROBLEMS – MALIGNANT MELANOMA CASE STUDY
PublicationThe paper presents utilization of one of the latest tool from the group of Machine learning techniques, namely Deep Convolutional Neural Networks (CNN), in process of decision making in selected medical problems. After the survey of the most successful applications of CNN in solving medical problems, the paper focuses on the very difficult problem of automatic analyses of the skin lesions. The authors propose the CNN structure...
-
Deep neural networks approach to skin lesions classification — A comparative analysis
PublicationThe paper presents the results of research on the use of Deep Neural Networks (DNN) for automatic classification of the skin lesions. The authors have focused on the most effective kind of DNNs for image processing, namely Convolutional Neural Networks (CNN). In particular, three kinds of CNN were analyzed: VGG19, Residual Networks (ResNet) and the hybrid of VGG19 CNN with the Support Vector Machine (SVM). The research was carried...
-
Intelligent system supporting diagnosis of malignant melanoma
PublicationMalignant melanomas are the most deadly type of skin cancers. Early diagnosis is a key for successful treatment and survival. The paper presents the system for supporting the process of diagnosis of skin lesions in order to detect a malignant melanoma. The paper describes the development process of an intel-ligent system purposed for the diagnosis of malignant melanoma. Presented sys-tem can be used as a decision support system...
Year 2016
-
Evolving neural network as a decision support system — Controller for a game of “2048” case study
PublicationThe paper proposes an approach to designing the neuro-genetic self-learning decision support system. The system is based on neural networks being adaptively learned by evolutionary mechanism, forming an evolved neural network. Presented learning algorithm enables for a selection of the neural network structure by establishing or removing of connections between the neurons, and then for a finding the beast suited values of the network...
-
SYSTEM WSPOMAGAJĄCY DIAGNOSTYKĘ CZERNIAKA ZŁOŚLIWEGO PRZY POMOCY METOD PRZETWARZANIA OBRAZU I ALGORYTMÓW INTELIGENCJI OBLICZENIOWEJ
PublicationNowotwory skóry są najczęściej spotykanymi nowotworami na świecie. Czerniaki złośliwe stanowią od około 5 do 7% wszystkich nowotworów złośliwych skóry u człowieka. Ich wczesne zdiagnozowanie jest kluczowym czynnikiem w późniejszej pomyślnej terapii. Niniejsza praca zawiera propozycję rozwinięcia i zautomatyzowania najważniejszej metody diagnozowania czerniaków, metody ABCD Stoltza. W artykule przedstawiono koncepcję i implementację...
seen 1866 times