prof. dr hab. inż. Dariusz Dereniowski
Employment
- Professor at Department of Algorithms and Systems Modelling
Publications
Filters
total: 84
Catalog Publications
Year 2024
-
Energy Constrained Depth First Search
PublicationDepth first search is a natural algorithmic technique for constructing a closed route that visits all vertices of a graph. The length of such a route equals, in an edge-weighted tree, twice the total weight of all edges of the tree and this is asymptotically optimal over all exploration strategies. This paper considers a variant of such search strategies where the length of each route is bounded by a positive integer $B$ (e.g....
Year 2023
-
Edge and Pair Queries-Random Graphs and Complexity
PublicationWe investigate two types of query games played on a graph, pair queries and edge queries. We concentrate on investigating the two associated graph parameters for binomial random graphs, and showing that determining any of the two parameters is NP-hard for bounded degree graphs.
-
The complexity of bicriteria tree-depth
PublicationThe tree-depth problem can be seen as finding an elimination tree of minimum height for a given input graph G. We introduce a bicriteria generalization in which additionally the width of the elimination tree needs to be bounded by some input integer b. We are interested in the case when G is the line graph of a tree, proving that the problem is NP-hard and obtaining a polynomial-time additive 2b-approximation algorithm. This particular...
Year 2022
-
Constant-Factor Approximation Algorithm for Binary Search in Trees with Monotonic Query Times
PublicationWe consider a generalization of binary search in linear orders to the domain of weighted trees. The goal is to design an adaptive search strategy whose aim is to locate an unknown target vertex of a given tree. Each query to a vertex v incurs a non-negative cost ω(v) (that can be interpreted as the duration of the query) and returns a feedback that either v is the target or the edge incident to v is given that is on the path towards...
Year 2021
-
An Efficient Noisy Binary Search in Graphs via Median Approximation
PublicationConsider a generalization of the classical binary search problem in linearly sorted data to the graph-theoretic setting. The goal is to design an adaptive query algorithm, called a strategy, that identifies an initially unknown target vertex in a graph by asking queries. Each query is conducted as follows: the strategy selects a vertex q and receives a reply v: if q is the target, then =, and if q is not the target, then v is a...
-
Gossiping by energy-constrained mobile agents in tree networks
PublicationEvery node of an edge-weighted tree network contains a data packet. At some nodes are placed mobile agents, each one possessing an amount of energy (not necessarily the same for all agents). While walking along the network, the agents spend the energy proportionally to the distance traveled and collect copies of the data packets present at the visited network nodes. An agent visiting a node deposits there copies of all currently...
-
On the Characteristic Graph of a Discrete Symmetric Channel
PublicationWe present some characterizations of characteristic graphs of row and/or column symmetric channels. We also give a polynomial-time algorithm that decides whether there exists a discrete symmetric channel whose characteristic graph is equal to a given input graph. In addition, we show several applications of our results.
-
Searching by heterogeneous agents
PublicationIn this work we introduce and study a pursuit-evasion game in which the search is performed by heterogeneous entities. We incorporate heterogeneity into the classical edge search problem by considering edge-labeled graphs: once a search strategy initially assigns labels to the searchers, each searcher can be only present on an edge of its own label. We prove that this problem is not monotone even for trees and we give instances...
Year 2020
-
Shared processor scheduling of multiprocessor jobs
PublicationWe study a problem of shared processor scheduling of multiprocessor weighted jobs. Each job can be executed on its private processor and simultaneously on possibly many processors shared by all jobs. This simultaneous execution reduces their completion times due to the processing time overlap. Each of the m shared processors may charge a different fee but otherwise the processors are identical. The goal is to maximize the total...
Year 2019
-
A Framework for Searching in Graphs in the Presence of Errors
PublicationWe consider a problem of searching for an unknown target vertex t in a (possibly edge-weighted) graph. Each vertex-query points to a vertex v and the response either admits that v is the target or provides any neighbor s of v that lies on a shortest path from v to t. This model has been introduced for trees by Onak and Parys [FOCS 2006] and for general graphs by Emamjomeh-Zadeh et al. [STOC 2016]. In the latter, the authors provide...
-
Building a Nest by an Automaton
PublicationA robot modeled as a deterministic finite automaton has to build a structure from material available to it. The robot navigates in the infinite oriented grid $Z x Z$. Some cells of the grid are full (contain a brick) and others are empty. The subgraph of the grid induced by full cells, called the {\em field}, is initially connected. The (Manhattan) distance between the farthest cells of the field is called its {\em span}. The robot...
-
Clearing directed subgraphs by mobile agents
PublicationWe study several problems of clearing subgraphs by mobile agents in digraphs. The agents can move only along directed walks of a digraph and, depending on the variant, their initial positions may be pre-specified. In general, for a given subset S of vertices of a digraph D and a positive integer k, the objective is to determine whether there is a subgraph H=(V,A) of D such that (a) S is a subset of V, (b) H is the union of k directed...
-
Cops, a fast robber and defensive domination on interval graphs
PublicationThe game of Cops and ∞-fast Robber is played by two players, one controlling c cops, the other one robber. The players alternate in turns: all the cops move at once to distance at most one each, the robber moves along any cop-free path. Cops win by sharing a vertex with the robber, the robber by avoiding capture indefinitely. The game was proposed with bounded robber speed by Fomin et al. in “Pursuing a fast robber on a graph”,...
-
Finding small-width connected path decompositions in polynomial time
PublicationA connected path decomposition of a simple graph $G$ is a path decomposition $(X_1,\ldots,X_l)$ such that the subgraph of $G$ induced by $X_1\cup\cdots\cup X_i$ is connected for each $i\in\{1,\ldots,l\}$. The connected pathwidth of $G$ is then the minimum width over all connected path decompositions of $G$. We prove that for each fixed $k$, the connected pathwidth of any input graph can be computed in polynomial-time. This answers...
-
On Tradeoffs Between Width- and Fill-like Graph Parameters
PublicationIn this work we consider two two-criteria optimization problems: given an input graph, the goal is to find its interval (or chordal) supergraph that minimizes the number of edges and its clique number simultaneously. For the interval supergraph, the problem can be restated as simultaneous minimization of the path width pw(G) and the profile p(G) of the input graph G. We prove that for an arbitrary graph G and an integer t ∈ {1,...
-
On-line Search in Two-Dimensional Environment
PublicationWe consider the following on-line pursuit-evasion problem. A team of mobile agents called searchers starts at an arbitrary node of an unknown network. Their goal is to execute a search strategy that guarantees capturing a fast and invisible intruder regardless of its movements using as few searchers as possible. We require that the strategy is connected and monotone, that is, at each point of the execution the part of the graph...
-
Searching by Heterogeneous Agents
PublicationIn this work we introduce and study a pursuit-evasion game in which the search is performed by heterogeneous entities. We incorporate heterogeneity into the classical edge search problem by considering edge-labeled graphs. In such setting a searcher, once a search strategy initially decides on the label of the searcher, can be present on an edge only if the label of the searcher and the label of the edge are the same. We prove...
Year 2018
-
Brief Announcement: Energy Constrained Depth First Search
PublicationDepth first search is a natural algorithmic technique for constructing a closed route that visits all vertices of a graph. The length of such route equals, in an edge-weighted tree, twice the total weight of all edges of the tree and this is asymptotically optimal over all exploration strategies. This paper considers a variant of such search strategies where the length of each route is bounded by a positive integer B (e.g. due...
-
Collaborative Exploration of Trees by Energy-Constrained Mobile Robots
PublicationWe study the problem of exploration of a tree by mobile agents (robots) that have limited energy. The energy constraint bounds the number of edges that can be traversed by a single agent. We use a team of agents to collectively explore the tree and the objective is to minimize the size of this team. The agents start at a single node, the designated root of the tree and the height of the tree is assumed to be less than the energy...
-
On-line Search in Two-Dimensional Environment
PublicationWe consider the following on-line pursuit-evasion problem. A team of mobile agents called searchers starts at an arbitrary node of an unknown network. Their goal is to execute a search strategy that guarantees capturing a fast and invisible intruder regardless of its movements using as few searchers as possible. As a way of modeling two-dimensional shapes, we restrict our attention to networks that are embedded into partial grids:...
-
Shared processor scheduling
PublicationWe study the shared processor scheduling problem with a single shared processor to maximize total weighted overlap, where an overlap for a job is the amount of time it is processed on its private and shared processor in parallel. A polynomial-time optimization algorithm has been given for the problem with equal weights in the literature. This paper extends that result by showing an (log)-time optimization algorithm for a class...
Year 2017
-
Approximation Strategies for Generalized Binary Search in Weighted Trees
PublicationWe consider the following generalization of the binary search problem. A search strategy is required to locate an unknown target node t in a given tree T. Upon querying a node v of the tree, the strategy receives as a reply an indication of the connected component of T\{v} containing the target t. The cost of querying each node is given by a known non-negative weight function, and the considered objective is to minimize the total...
-
Collaborative Delivery by Energy-Sharing Low-Power Mobile Robots
PublicationWe study two variants of delivery problems for mobile robots sharing energy. Each mobile robot can store at any given moment at most two units of energy, and whenever two robots are at the same location, they can transfer energy between each other, respecting the maximum capacity. The robots operate in a simple graph and initially each robot has two units of energy. A single edge traversal by an robot reduces its energy by one...
-
Collision-free network exploration
PublicationMobile agents start at different nodes of an n-node network. The agents synchronously move along the network edges in a collision-free way, i.e., in no round two agents may occupy the same node. An agent has no knowledge of the number and initial positions of other agents. We are looking for the shortest time required to reach a configuration in which each agent has visited all nodes and returned to its starting location. In...
-
Shared multi-processor scheduling
PublicationWe study shared multi-processor scheduling problem where each job can be executed on its private processor and simultaneously on one of many processors shared by all jobs in order to reduce the job’s completion time due to processing time overlap. The total weighted overlap of all jobs is to be maximized. The problem models subcontracting scheduling in supply chains and divisible load scheduling in computing. We show that synchronized...
-
The Snow Team Problem
PublicationWe study several problems of clearing subgraphs by mobile agents in digraphs. The agents can move only along directed walks of a digraph and, depending on the variant, their initial positions may be pre-specified. In general, for a given subset~$\cS$ of vertices of a digraph $D$ and a positive integer $k$, the objective is to determine whether there is a subgraph $H=(\cV_H,\cA_H)$ of $D$ such that (a) $\cS \subseteq \cV_H$, (b)...
Year 2016
-
Bounds on the cover time of parallel rotor walks
PublicationThe rotor-router mechanism was introduced as a deterministic alternative to the random walk in undirected graphs. In this model, a set of k identical walkers is deployed in parallel, starting from a chosen subset of nodes, and moving around the graph in synchronous steps. During the process, each node successively propagates walkers visiting it along its outgoing arcs in round-robin fashion, according to a fixed ordering. We consider...
-
Distributed Evacuation in Graphs with Multiple Exits
PublicationWe consider the problem of efficient evacuation using multiple exits. We formulate this problem as a discrete problem on graphs where mobile agents located in distinct nodes of a given graph must quickly reach one of multiple possible exit nodes, while avoiding congestion and bottlenecks. Each node of the graph has the capacity of holding at most one agent at each time step. Thus, the agents must choose their movements strategy...
-
Normal-form preemption sequences for an open problem in scheduling theory
PublicationStructural properties of optimal preemptive schedules have been studied in a number of recent papers with a primary focus on two structural parameters: the minimum number of preemptions necessary, and a tight lower bound on shifts, i.e., the sizes of intervals bounded by the times created by preemptions, job starts, or completions. These two parameters have been investigated for a large class of preemptive scheduling problems,...
-
Topology recognition and leader election in colored networks
PublicationTopology recognition and leader election are fundamental tasks in distributed computing in networks. The first of them requires each node to find a labeled isomorphic copy of the network, while the result of the second one consists in a single node adopting the label 1 (leader), with all other nodes adopting the label 0 and learning a path to the leader. We consider both these problems in networks whose nodes are equipped with...
Year 2015
-
Distinguishing views in symmetric networks: A tight lower bound
PublicationThe view of a node in a port-labeled network is an infinite tree encoding all walks in the network originating from this node. We prove that for any integers n ≥ D ≥ 1, there exists a port-labeled network with at most n nodes and diameter at most D which contains a pair of nodes whose (infinite) views are different, but whose views truncated to depth Omega( D log(n/ D )) are identical.
-
Distributed graph searching with a sense of direction
PublicationIn this work we consider the edge searching problem for vertex-weighted graphs with arbitrarily fast and invisible fugitive. The weight function w provides for each vertex v the minimum number of searchers required to guard v, i.e., the fugitive may not pass through v without being detected only if at least w(v) searchers are present at v. This problem is a generalization of the classical edge searching problem, in which one has...
-
Fast collaborative graph exploration
PublicationWe study the following scenario of online graph exploration. A team of k agents is initially located at a distinguished vertex r of an undirected graph. At every time step, each agent can traverse an edge of the graph. All vertices have unique identifiers, and upon entering a vertex, an agent obtains the list of identifiers of all its neighbors. We ask how many time steps are required to complete exploration, i.e., to make sure...
-
Rendezvous of heterogeneous mobile agents in edge-weighted networks
PublicationWe introduce a variant of the deterministic rendezvous problem for a pair of heterogeneous agents operating in an undirected graph, which differ in the time they require to traverse particular edges of the graph. Each agent knows the complete topology of the graph and the initial positions of both agents. The agent also knows its own traversal times for all of the edges of the graph, but is unaware of the corresponding traversal...
-
The complexity of minimum-length path decompositions
PublicationWe consider a bi-criteria generalization of the pathwidth problem, where, for given integers k, l and a graph G, we ask whether there exists a path decomposition P of G such that the width of P is at most k and the number of bags in P, i.e., the length of P, is at most l. We provide a complete complexity classification of the problem in terms of k and l for general graphs. Contrary to the original pathwidth problem, which is fixed-parameter...
-
The complexity of zero-visibility cops and robber
PublicationWe consider the zero-visibility cops & robber game restricted to trees. We produce a characterisation of trees of copnumber k and We consider the computational complexity of the zero-visibility Cops and Robber game. We present a heavily modified version of an already-existing algorithm that computes the zero-visibility copnumber of a tree in linear time and we show that the corresponding decision problem is NP-complete on a nontrivial...
-
The searchlight problem for road networks
PublicationWe consider the problem of searching for a mobile intruder hiding in a road network given as the union of two or more lines, or two or more line segments, in the plane. Some of the intersections of the road network are occupied by stationary guards equipped with a number of searchlights, each of which can emit a single ray of light in any direction along the lines (or line segments) it is on. The goal is to detect the intruder,...
-
Zero-visibility cops and robber and the pathwidth of a graph
PublicationWe examine the zero-visibility cops and robber graph searching model, which differs from the classical cops and robber game in one way: the robber is invisible. We show that this model is not monotonic. We show that the zero-visibility copnumber of a graph is bounded above by its pathwidth and cannot be bounded below by any nontrivial function of the pathwidth. As well, we define a monotonic version of this game and show that the...
Year 2014
-
Bounds on the Cover Time of Parallel Rotor Walks
PublicationThe rotor-router mechanism was introduced as a deterministic alternative to the random walk in undirected graphs. In this model, a set of k identical walkers is deployed in parallel, starting from a chosen subset of nodes, and moving around the graph in synchronous steps. During the process, each node maintains a cyclic ordering of its outgoing arcs, and successively propagates walkers which visit it along its outgoing arcs in...
-
Brushing with additional cleaning restrictions
PublicationIn graph cleaning problems, brushes clean a graph by traversing it subject to certain rules. We consider the process where at each time step, a vertex that has at least as many brushes as incident, contaminated edges, sends brushes down these edges to clean them. Various problems arise, such as determining the minimum number of brushes (called the brush number) that are required to clean the entire graph. Here, we study a new variant...
-
Collision-Free Network Exploration
PublicationA set of mobile agents is placed at different nodes of a n-node network. The agents synchronously move along the network edges in a collision-free way, i.e., in no round may two agents occupy the same node. In each round, an agent may choose to stay at its currently occupied node or to move to one of its neighbors. An agent has no knowledge of the number and initial positions of other agents. We are looking for the shortest possible...
-
Leader election for anonymous asynchronous agents in arbitrary networks
PublicationWe consider the problem of leader election among mobile agents operating in an arbitrary network modeled as an undirected graph. Nodes of the network are unlabeled and all agents are identical. Hence the only way to elect a leader among agents is by exploiting asymmetries in their initial positions in the graph. Agents do not know the graph or their positions in it, hence they must gain this knowledge by navigating in the graph...
-
Rendezvous of Distance-Aware Mobile Agents in Unknown Graphs
PublicationWe study the problem of rendezvous of two mobile agents starting at distinct locations in an unknown graph. The agents have distinct labels and walk in synchronous steps. However the graph is unlabelled and the agents have no means of marking the nodes of the graph and cannot communicate with or see each other until they meet at a node. When the graph is very large we want the time to rendezvous to be independent of the graph size...
-
Rendezvous of Heterogeneous Mobile Agents in Edge-Weighted Networks
PublicationWe introduce a variant of the deterministic rendezvous problem for a pair of heterogeneous agents operating in an undirected graph, which differ in the time they require to traverse particular edges of the graph. Each agent knows the complete topology of the graph and the initial positions of both agents. The agent also knows its own traversal times for all of the edges of the graph, but is unaware of the corresponding traversal...
-
The Complexity of Zero-Visibility Cops and Robber
PublicationIn this work we deal with the computational complexity aspects of the zero-visibility Cops and Robber game. We provide an algorithm that computes the zero-visibility copnumber of a tree in linear time and show that the corresponding decision problem is NP-complete even for the class of starlike graphs.
Year 2013
-
Fast Collaborative Graph Exploration
PublicationWe study the following scenario of online graph exploration. A team of k agents is initially located at a distinguished vertex r of an undirected graph. At every time step, each agent can traverse an edge of the graph. All vertices have unique identifiers, and upon entering a vertex, an agent obtains the list of identifiers of all its neighbors. We ask how many time steps are required to complete exploration, i.e., to make sure...
-
On minimum cost edge searching
PublicationWe consider the problem of finding edge search strategies of minimum cost. The cost of a search strategy is the sum of searchers used in the clearing steps of the search. One of the natural questions is whether it is possible to find a search strategy that minimizes both the cost and the number of searchers used to clear a given graph G. We call such a strategy ideal. We prove, by an example, that ideal search strategies do not...
-
On-line ranking of split graphs
PublicationA vertex ranking of a graph G is an assignment of positive integers (colors) to the vertices of G such that each path connecting two vertices of the same color contains a vertex of a higher color. Our main goal is to find a vertex ranking using as few colors as possible. Considering on-line algorithms for vertex ranking of split graphs, we prove that the worst case ratio of the number of colors used by any on-line ranking algorithm...
-
Optimal edge-coloring with edge rate constraints
PublicationWe consider the problem of covering the edges of a graph by a sequence of matchings subject to the constraint that each edge e appears in at least a given fraction r(e) of the matchings. Although it can be determined in polynomial time whether such a sequence of matchings exists or not [Grötschel et al., Combinatorica (1981), 169–197], we show that several questions about the length of the sequence are computationally intractable....
-
Three-fast-searchable graphs
PublicationIn the edge searching problem, searchers move from vertex to vertex in a graph to capture an invisible, fast intruder that may occupy either vertices or edges. Fast searching is a monotonic internal model in which, at every move, a new edge of the graph G must be guaranteed to be free of the intruder. That is, once all searchers are placed the graph G is cleared in exactly |E(G)| moves. Such a restriction obviously necessitates...
seen 5513 times