dr inż. Łukasz Czekaj
Publications
Filters
total: 8
Catalog Publications
Year 2016
-
Quantum communication complexity advantage implies violation of a Bell inequality
PublicationWe obtain a general connection between a quantum advantage in communication complexity and non-locality. We show that given any protocol offering a (sufficiently large) quantum advantage in communication complexity, there exists a way of obtaining measurement statistics which violate some Bell inequality. Our main tool is port-based teleportation. If the gap between quantum and classical communication complexity can grow arbitrarily...
-
Sharp transitions in low-number quantum dots Bayesian magnetometry
PublicationWe consider Bayesian estimate of static magnetic field, characterized by a prior Gaussian probability distribution, in systems of a few electron quantum dot spins interacting with infinite temperature spin environment via hyperfine interaction. Sudden transitions among optimal states and measurements are observed. Usefulness of measuring occupation levels is shown for all times of the evolution, together with the role of entanglement...
Year 2012
-
Directed percolation effects emerging from superadditivity of quantum networks
PublicationEntanglement-induced nonadditivity of classical communication capacity in networks consisting of quantum channels is considered. Communication lattices consisting of butterfly-type entanglement-breaking channels augmented, with some probability, by identity channels are analyzed. The capacity superadditivity in the network is manifested in directed correlated bond percolation which we consider in two flavors: simply directed and...
-
Schemes of transmission of classical information via quantum channels with many senders: Discrete- and continuous-variable cases
PublicationSuperadditivity effects in the classical capacity of discrete multiaccess channels and continuous variable (CV) Gaussian MACs are analyzed. Several examples of the manifestation of superadditivity in the discrete case are provided, including, in particular, a channel which is fully symmetric with respect to all senders. Furthermore, we consider a class of channels for which input entanglement across more than two copies of the...
Year 2011
-
On structural physical approximations and entanglement breaking maps
PublicationVery recently, a conjecture saying that the so-called structural physical approximations (SPAs) to optimal positive maps (optimal entanglement witnesses) give entanglement breaking (EB) maps (separable states) has been posed (Korbicz et al 2008 Phys. Rev. A 78 062105). The main purpose of this contribution is to explore this subject. First, we extend the set of entanglement witnesses supporting the conjecture. Then, we ask whether...
-
Subadditivity of the minimum output entropy and superactivation of the classical capacity of quantum multiple access channels
PublicationWe study subadditivity of the minimum output entropy (Hmin) of quantum multiple access channels (MACs). We provide an example of violation of the additivity theorem for Hmin known in classical information theory. Our result is based on a fundamental property of MACs, i.e., independence of each sender. The channels used in the example can be constructed explicitly. On the basis of subadditivity of Hmin we also provide an example...
Year 2010
-
Quantum superadditivity in linear optics networks: Sending bits via multiple-access Gaussian channels
PublicationSuperadditivity effects of communication capacities are known in the case of discrete variable quantum channels. We describe the continuous variable analog of one of these effects in the framework of Gaussian multiple access channels (MACs). Classically, superadditivity-type effects are strongly restricted: For example, adding resources to one sender is never advantageous to other senders in sending their respective information...
Year 2009
-
Purely quantum superadditivity of classical capacities of quantum multiple access channels
PublicationWe are studying classical capacities of quantum memoryless multiaccess channels in geometric terms and we are revealing a break of additivity of the Holevo-like capacity. This effect is a purely quantum mechanical one, since, as we point out, the capacity regions of all classical memoryless multiaccess channels are additive. It is the first such effect revealed in the field of classical information transmission via quantum channels.
seen 1046 times