ISSN:
eISSN:
Disciplines
(Field of Science):
- mathematics (Natural sciences)
Ministry points: Help
Year | Points | List |
---|---|---|
Year 2025 | 140 | Ministry scored journals list 2024 |
Year | Points | List |
---|---|---|
2025 | 140 | Ministry scored journals list 2024 |
2024 | 140 | Ministry scored journals list 2024 |
2023 | 140 | Ministry Scored Journals List |
2022 | 140 | Ministry Scored Journals List 2019-2022 |
2021 | 140 | Ministry Scored Journals List 2019-2022 |
2020 | 140 | Ministry Scored Journals List 2019-2022 |
2019 | 140 | Ministry Scored Journals List 2019-2022 |
2018 | 30 | A |
2017 | 30 | A |
2016 | 30 | A |
2015 | 25 | A |
2014 | 30 | A |
2013 | 30 | A |
2012 | 35 | A |
2011 | 35 | A |
2010 | 32 | A |
Model:
Points CiteScore:
Year | Points |
---|---|
Year 2023 | 2.9 |
Year | Points |
---|---|
2023 | 2.9 |
2022 | 2.9 |
2021 | 2.9 |
2020 | 2.6 |
2019 | 2.6 |
2018 | 2.2 |
2017 | 2.3 |
2016 | 1.8 |
2015 | 1.6 |
2014 | 1.5 |
2013 | 1.5 |
2012 | 1.4 |
2011 | 1.7 |
Impact Factor:
Sherpa Romeo:
Papers published in journal
Filters
total: 5
Catalog Journals
Year 2024
-
Periodic solutions of Lagrangian systems under small perturbations
PublicationIn this paper we prove the existence of mountain pass periodic solutions of a certain class of generalized Lagrangian systems under small perturbations. We show that the found periodic solutions converge to a periodic solution of the unperturbed system if the perturbation tends to 0. The proof requires to work in a rather unusual (mixed) Orlicz–Sobolev space setting, which bears several challenges.
Year 2023
-
Attractors of dissipative homeomorphisms of the infinite surface homeomorphic to a punctured sphere
PublicationA class of dissipative orientation preserving homeomorphisms of the infinite annulus,pairs of pants, or generally any infinite surface homeomorphic to a punctured sphere isconsidered. We prove that in some isotopy classes the local behavior of such homeomor-phisms at a fixed point, namely the existence of so-called inverse saddle, impacts thetopology of the attractor — it cannot be arcwise connected
Year 2022
-
A convergence result for mountain pass periodic solutions of perturbed Hamiltonian systems
PublicationIn this work, we study second-order Hamiltonian systems under small perturbations. We assume that the main term of the system has a mountain pass structure, but do not suppose any condition on the perturbation. We prove the existence of a periodic solution. Moreover, we show that periodic solutions of perturbed systems converge to periodic solutions of the unperturbed systems if the perturbation tends to zero. The assumption on...
Year 2014
-
The exponential law for partial, local and proper maps and its application to otopy theory
Publication
Year 2012
-
Two almost homoclinic solutions for second-order perturbed Hamiltonian systems
PublicationW niniejszym artykule badamy problem istnienia rozwiązań prawie homoklinicznych (rozwiązań znikających w nieskończonościach) dla układów Hamiltonowskich drugiego rzędu (układów Newtonowskich) z zaburzeniem. Nasz wynik jest uogólnieniem twierdzenia Rabinowitza-Tanaki o istnieniu rozwiązania homoklinicznego dla układów bez zaburzenia [Math. Z. 206 (1991) 473-499]. O zaburzeniu zakładamy, że jest dostatecznie małe w przestrzeni funkcji...
seen 1158 times