COMPTES RENDUS MATHEMATIQUE - Journal - Bridge of Knowledge

Search

COMPTES RENDUS MATHEMATIQUE

ISSN:

1631-073X

eISSN:

1778-3569

Disciplines
(Field of Science):

  • mathematics (Natural sciences)

Ministry points: Help

Ministry points - current year
Year Points List
Year 2025 70 Ministry scored journals list 2024
Ministry points - previous years
Year Points List
2025 70 Ministry scored journals list 2024
2024 70 Ministry scored journals list 2024
2023 70 Ministry Scored Journals List
2022 70 Ministry Scored Journals List 2019-2022
2021 70 Ministry Scored Journals List 2019-2022
2020 70 Ministry Scored Journals List 2019-2022
2019 70 Ministry Scored Journals List 2019-2022
2018 20 A
2017 20 A
2016 20 A
2015 20 A
2014 20 A
2013 20 A
2012 20 A
2011 20 A
2010 27 A

Model:

Open Access

Points CiteScore:

Points CiteScore - current year
Year Points
Year 2023 1.3
Points CiteScore - previous years
Year Points
2023 1.3
2022 1.2
2021 1.2
2020 1.4
2019 1.3
2018 1.1
2017 1.1
2016 1
2015 1.1
2014 1.1
2013 1.1
2012 1
2011 1.1

Impact Factor:

Log in to see the Impact Factor.

Filters

total: 3

  • Category
  • Year
  • Options

clear Chosen catalog filters disabled

Catalog Journals

Year 2014
  • Bounds on the vertex-edge domination number of a tree
    Publication

    - COMPTES RENDUS MATHEMATIQUE - Year 2014

    A vertex-edge dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every edge of $G$ is incident with a vertex of $D$ or a vertex adjacent to a vertex of $D$. The vertex-edge domination number of a graph $G$, denoted by $\gamma_{ve}(T)$, is the minimum cardinality of a vertex-edge dominating set of $G$. We prove that for every tree $T$ of order $n \ge 3$ with $l$ leaves and $s$ support vertices we have $(n-l-s+3)/4...

    Full text available to download

Year 2011
  • A lower bound on the total outer-independent domination number of a tree
    Publication

    A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_t^{oi}(T) >= (2n-2l+2)/3,...

    Full text available to download

  • An upper bound on the 2-outer-independent domination number of a tree
    Publication

    A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)D has a at least two neighbors in D, and the set V(G)D is independent. The 2-outer-independent domination number of a graph G, denoted by gamma_2^{oi}(G), is the minimum cardinality of a 2-outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_2^{oi}(T) <= (n+l)/2,...

    Full text to download in external service

seen 593 times