ISSN:
1541-1672
eISSN:
1941-1294
Disciplines
(Field of Science):
- automation, electronics, electrical engineering and space technologies (Engineering and Technology)
- information and communication technology (Engineering and Technology)
- safety engineering (Engineering and Technology)
- biomedical engineering (Engineering and Technology)
- mechanical engineering (Engineering and Technology)
- management and quality studies (Social studies)
- international relations (Social studies)
- computer and information sciences (Natural sciences)
(Field of Science)
Ministry points: Help
Year | Points | List |
---|---|---|
Year 2024 | 140 | Ministry scored journals list 2024 |
Year | Points | List |
---|---|---|
2024 | 140 | Ministry scored journals list 2024 |
2023 | 140 | Ministry Scored Journals List |
2022 | 140 | Ministry Scored Journals List 2019-2022 |
2021 | 140 | Ministry Scored Journals List 2019-2022 |
2020 | 140 | Ministry Scored Journals List 2019-2022 |
2019 | 140 | Ministry Scored Journals List 2019-2022 |
2018 | 40 | A |
2017 | 40 | A |
2016 | 40 | A |
2015 | 35 | A |
2014 | 35 | A |
2013 | 35 | A |
2012 | 35 | A |
2011 | 35 | A |
2010 | 32 | A |
Model:
Hybrid - transformation agreement
Points CiteScore:
Year | Points |
---|---|
Year 2023 | 13.8 |
Year | Points |
---|---|
2023 | 13.8 |
2022 | 10.2 |
2021 | 7.5 |
2020 | 9 |
2019 | 10.4 |
2018 | 6.4 |
2017 | 4.5 |
2016 | 6.6 |
2015 | 5.4 |
2014 | 4.8 |
2013 | 4.8 |
2012 | 4.2 |
2011 | 4.3 |
Impact Factor:
Log in to see the Impact Factor.
Sherpa Romeo:
Papers published in journal
Filters
total: 1
Catalog Journals
Year 2024
-
Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio
PublicationThe purpose of this paper is to introduce neural network-based methods that surpass state-of-the-art (SOTA) models, either by training faster or having simpler architecture, while maintaining comparable effectiveness in musical instrument identification in polyphonic music. Several approaches are presented, including two authors’ proposals, i.e., spiking neural networks (SNN) and a modular deep learning model named FMCNN (Fully...
seen 336 times