Michał Sieczczyński
Business contact
- Location
- Al. Zwycięstwa 27, 80-219 Gdańsk
- Phone
- +48 58 348 62 62
- biznes@pg.edu.pl
Contact
Publication showcase
-
Platelet RNA Sequencing Data Through the Lens of Machine Learning
Liquid biopsies offer minimally invasive diagnosis and monitoring of cancer disease. This biosource is often analyzed using sequencing, which generates highly complex data that can be used using machine learning tools. Nevertheless, validating the clinical applications of such methods is challenging. It requires: (a) using data from many patients; (b) verifying potential bias concerning sample collection; and (c) adding interpretability...
-
Neural Graph Collaborative Filtering: Analysis of Possibilities on Diverse Datasets
This paper continues the work by Wang et al. [17]. Its goal is to verify the robustness of the NGCF (Neural Graph Collaborative Filtering) technique by assessing its ability to generalize across different datasets. To achieve this, we first replicated the experiments conducted by Wang et al. [17] to ensure that their replication package is functional. We received sligthly better results for ndcg@20 and somewhat poorer results for...
-
Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification
Liquid biopsy demonstrates excellent potential in patient management by providing a minimally invasive and cost-effective approach to detecting and monitoring cancer, even at its early stages. Due to the complexity of liquid biopsy data, machine-learning techniques are increasingly gaining attention in sample analysis, especially for multidimensional data such as RNA expression profiles. Yet, there is no agreement in the community...
seen 501 times