dr inż. Paulina Kosmela
Employment
- Assistant professor at Department of Polymers Technology
-
Valorisation of bioplastics synthesised by liquefaction of celluloseusing hetero- and homogeneous catalysts
Open Research DataThe purpose of the present study was to test the effectiveness of a heterogeneous catalyst such as Nafion ion-exchange resin on the cellulose liquefaction process. The results obtained were compared with the bio-polyols obtained in a conventional way, using a homogeneous catalyst (sulfuric acid (VI)). Depending on the catalyst used and the temperature...
-
Valorization of bio-based polyols synthesized via biomass liquefaction
Open Research DataAs the properties of polyols have a huge impact on the properties of manufactured polyurethanes, this study aims to determine the influence of polyethylene glycols with different molecular masses on the course of the biomass liquefaction process and bio-polyol properties. The obtained polyols were characterized by rheological studies. To confirm the...
-
Influence of bio-polyols with different molecular weight on properites of PUR-PIR foams
Open Research DataThis work attempts to validate the possibility of replacing petrochemical polyols with previously synthesized bio-polyols and their impact on the structure and properties of rigid polyurethane-polyisocyanurate (PUR-PIR). The influence of bio-polyols addition on foam properties was investigated by mechanical testing, Fourier transform infrared spectroscopy...
-
Validation of polyurethane-wood composites properties
Open Research DataThis study focuses on the development of the PU-WC manufacturing method, the determination of properties of this type of composite, and the indication of its potential application. The mechanical properties of PU-WC were characterized by flexural tests. To determine the thermal properties, dynamic mechanical analysis (DMA) and thermogravimetric analysis...
-
Bio based PUR-PIR foams thermal degradation (TG) and isoconversional kinetics
Open Research DataIn the present work, we perform a thorough thermogravimetric (TG) analysis of the bio-based polyurethane – polyisocyanurate (PUR-PIR) foams in both nitrogen and oxygen atmosphere. A sustainable element of the foam was a biopolyol obtained via acid-catalyzed liquefaction of Zostera Marina and Enteromorpha Algae biomass. Based on isoconversional analysis...
seen 4124 times