A new concept of PWM duty cycle computation using the Barycentric Coordinates in a Three-Dimensional voltage vectors arrangement - Publication - Bridge of Knowledge

Search

A new concept of PWM duty cycle computation using the Barycentric Coordinates in a Three-Dimensional voltage vectors arrangement

Abstract

The paper presents a novel approach to the Pulse Width Modulation (PWM) duty cycle computing for complex or irregular voltage vector arrangements in the two (2D) and three–dimensional (3D) Cartesian coordinate systems. The given vectors arrangement can be built using at least three vectors or collections with variable number of involved vectors (i.e. virtual vectors). Graphically, these vectors form a convex figure, in particular, a triangle or a tetrahedron. The reference voltage vector position inside that figure can be expressed by the barycentric coordinates, which are calculated using the second (2D case) or the third–degree determinant (3D case) – without trigonometry and angles. Thus, the speed of the PWM duty cycle computation rises significantly. The use of the triangle area or the tetrahedron volume, instead of the standard vector projection also permits for a well–defined and universal approach to identifying the reference vector position, especially for converters with complex and/or deformed space–vector diagrams (i.e. floating DC–link, multisource DC–link). The proposed computation scheme is based on simple instructions without trigonometry thereby, the DSP processor, or digital solution for field–programmable gate array, can fast–perform this operation using atomic operations. The aim of the presented considerations is not a novel PWM modulation, but a computable idea of a general calculation scheme for cases in which the distribution of vectors is non-trivial. A detailed algebraic and geometric analysis, as well as mathematical proofs on the total consistency of the results with the standard projection method, are also included. Subsequently, the Three–Dimensional Space Vector Modulation (3D–SVM), is considered as a special background to present a novel approach.

Citations

  • 2

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cite as

Full text

download paper
downloaded 164 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
IEEE Access no. 8, pages 8019 - 8031,
ISSN: 2169-3536
Language:
English
Publication year:
2020
Bibliographic description:
Szczepankowski P., Poliakov N., Vertegel D., Szwarc K., Strzelecki R.: A new concept of PWM duty cycle computation using the Barycentric Coordinates in a Three-Dimensional voltage vectors arrangement// IEEE Access -Vol. 8, (2020), s.8019-8031
DOI:
Digital Object Identifier (open in new tab) 10.1109/access.2019.2963743
Bibliography: test
  1. J. W. Kolar, T. Friedli, J. Rodriguez, and P. W. Wheeler, ''Review of three- phase PWM AC-AC converter topologies,'' IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 4988-5006, Nov. 2011. open in new tab
  2. B. Bose, ''Power electronics and motor drives recent progress and perspec- tive,'' IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 581-588, Feb. 2009. open in new tab
  3. J. Carrasco, L. Franquelo, J. Bialasiewicz, E. Galvan, R. P. Guisado, M. Pratsa, and J. Leon, ''Power-electronic systems for the grid integration of renewable energy sources: A survey,'' IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1002-1016, Jun. 2006. open in new tab
  4. S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. Franquelo, B. Wu, J. Rodriguez, M. Perez, and J. Leon, ''Recent advances and industrial applications of multilevel converters,'' IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2553-2580, Aug. 2010. open in new tab
  5. K. K. Gupta, A. Ranjan, P. Bhatnagar, L. K. Sahu, and S. Jain, ''Multilevel inverter topologies with reduced device count: A review,'' IEEE Trans. Power Electron., vol. 31, no. 1, pp. 135-151, Jan. 2016. open in new tab
  6. P. Szczepankowski and J. Nieznanski, ''Application of barycentric coor- dinates in space vector PWM computations,'' IEEE Access, vol. 7, pp. 91499-91508, 2019. open in new tab
  7. F. Zhang and Y. Yan, ''Selective harmonic elimination PWM control scheme on a three-phase four-leg voltage source inverter,'' IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1682-1689, Jul. 2009. open in new tab
  8. B. Saber, B. Abdelkader, B. Said, and B. Mansour, ''Reactive power compensation in three-phase four-wire distribution system using four-leg DSATATCOM based on symmetrical components,'' in Proc. 4th Int. Conf. Electr. Eng. (ICEE), Dec. 2015, pp. 1-4. open in new tab
  9. Q. Tabart, I. Vechiu, A. Etxeberria, and S. Bacha, ''Hybrid energy storage system microgrids integration for power quality improvement using four- leg three-level NPC inverter and second-order sliding mode control,'' IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 424-435, Jan. 2018. open in new tab
  10. B.-F. Chen, L. Yang, D.-K. Hu, J.-J. Sun, and X.-M. Zha, ''A novel and small-capacity neutral line active power filter in three-phase four- wire system,'' in Proc. Int. Conf. Power Electron. Drive Syst. (PEDS), Nov. 2009, pp. 371-375. open in new tab
  11. B. Saber, B. Abdelkader, B. Said, and B. Mansour, ''Neutral current compensation of three-phase four-wire distribution system using three- level four-leg DSTATCOM based on simplified 3DSVM algorithm,'' in Proc. 6th Int. Conf. Control Eng. Inf. Technol.(CEIT), Oct. 2018, pp. 1-6. open in new tab
  12. S. Sajjad Seyedalipour, S. Bayhan, and H. Komurcugil, ''Lyapunov- function-based control approach for three-level four-leg shunt active power filters with nonlinear and unbalanced loads,'' in Proc. IEEE 27th Int. Symp. Ind. Electron. (ISIE), Jun. 2018, pp. 427-432.
  13. M. Bouzidi and S. Barkat, ''Backstepping-direct power control of three- level four-leg shunt active power filter,'' in Proc. Int. Conf. Commun. Electr. Eng. (ICCEE), Dec. 2018, pp. 1-6. open in new tab
  14. N. Celanovic and D. Boroyevich, ''A fast space-vector modulation algo- rithm for multilevel three-phase converters,'' IEEE Trans. Ind Appl., vol. 37, no. 2, pp. 637-641, Mar./Apr. 2001. open in new tab
  15. L. Hu, H. Wang, V. Deng, and X. He, ''A simple SVPWM algorithm for multilevel inverters,'' in Proc. IEEE 35th Annu. Power Electron. Specialists Conf., vol. 5, Nov. 2004, pp. 3476-3480.
  16. B. Jacob and M. R. Baiju, ''A new space vector modulation scheme for multilevel inverters which directly vector quantize the reference space vector,'' IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 88-95, Jan. 2015. open in new tab
  17. Z. Shu, N. Ding, J. Chen, H. Zhu, and X. He, ''Multilevel SVPWM with DC-link capacitor voltage balancing control for diode-clamped multilevel converter based STATCOM,'' IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1884-1896, May 2013. open in new tab
  18. J. Pou, D. Boroyevich, and R. Pindado, ''New feedforward space-vector PWM method to obtain balanced AC output voltages in a three-level neutral-point-clamped converter,'' IEEE Trans. Ind. Electron., vol. 49, no. 5, pp. 1026-1034, Oct. 2002. open in new tab
  19. J. I. Leon, S. Vazquez, R. Portillo, L. G. Franquelo, J. M. Carrasco, P. W. Wheeler, and A. J. Watson, ''Three-dimensional feedforward space vector modulation applied to multilevel diode-clamped converters,'' IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 101-109, Jan. 2009. open in new tab
  20. R. Zhang, V. Prasad, D. Boroyevich, and F. Lee, ''Three-dimensional space vector modulation for four-leg voltage-source converters,'' IEEE Trans. Power Electron., vol. 17, no. 3, pp. 314-326, May 2002. open in new tab
  21. N. Celanovic and D. Boroyevich, ''A comprehensive study of neutral point voltage balancing problem in three-level neutral-point-clamped voltage source PWM inverters,'' IEEE Trans. Power Electron., vol. 15, no. 2, pp. 242-249, Mar. 2000. open in new tab
  22. H. Zhang, S. Jon Finney, A. Massoud, and B. Williams, ''An SVM algo- rithm to balance the capacitor voltages of the three-level NPC active power filter,'' IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2694-2702, Nov. 2008.
  23. A. Lewicki, Z. Krzeminski, and H. Abu-Rub, ''Space-vector pulsewidth modulation for three-level NPC converter with the neutral point voltage control,'' IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5076-5086, Nov. 2011. open in new tab
  24. R. Maheshwari, S. Munk-Nielsen, and S. Busquets-Monge, ''Design of neutral-point voltage controller of a three-level NPC inverter with small DC-link capacitors,'' IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1861-1871, May 2013. open in new tab
  25. M. S. Floater, K. Hormann, and G. Kós, ''A general construction of barycentric coordinates over convex polygons,'' Adv. Comput. Math., vol. 24, nos. 1-4, pp. 311-331, Jan. 2006. open in new tab
  26. L. Franquelo, M. Prats, R. Portillo, J. Galvan, M. Perales, J. Carrasco, E. Diez, and J. Jimenez, ''Three-dimensional space-vector modulation algorithm for four-leg multilevel converters using abc coordinates,'' IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 458-466, Apr. 2006. open in new tab
  27. S. Busquets-Monge, J. Bordonau, D. Boroyevich, and S. Somavilla, ''The nearest three virtual space vector PWM-a modulation for the comprehen- sive neutral-point balancing in the three-level NPC inverter,'' IEEE Power Electron. Lett., vol. 2, no. 1, pp. 11-15, Mar. 2004. open in new tab
  28. J. Yao and T. Green, ''DC-link capacitors sizing for three-level neutral- point-clamped inverters in four-wire distributed generation systems,'' in Proc. Int. Conf. Future Power Syst., Nov. 2005, p. 5.
  29. B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, ''A review of three-phase improved power quality AC-DC converters,'' IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641- 660, Jun. 2004. open in new tab
  30. F. Rojas, R. Kennel, R. Cardenas, R. Repenning, J. C. Clare, and M. Diaz, ''A new space-vector-modulation algorithm for a three-level four-leg NPC inverter,'' IEEE Trans. Energy Convers., vol. 32, no. 1, pp. 23-35, Mar. 2017. open in new tab
  31. S. Busquets-Monge, R. Maheshwari, and S. Munk-Nielsen, ''Overmodula- tion of n-level three-leg DC-AC diode-clamped converters with compre- hensive capacitor voltage balance,'' IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1872-1883, May 2013. open in new tab
  32. X. Li, Z. Deng, Z. Chen, and Q. Fei, ''Analysis and simplification of three- dimensional space vector PWM for three-phase four-leg inverters,'' IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 450-464, Feb. 2011. open in new tab
  33. A. Hassan, Y. Savaria, and M. Sawan, ''GaN integration technology, an ideal candidate for high-temperature applications: A review,'' IEEE Access, vol. 6, pp. 78790-78802, 2018. open in new tab
  34. A. Choudhury, ''Present status of sic based power converters and gate drivers-A review,'' in Proc. Int. Power Electron. Conf. (IPEC-Niigata- ECCE Asia), May 2018, pp. 3401-3405. open in new tab
  35. P. Ning, T. Yuan, Y. Kang, C. Han, and L. Li, ''Review of Si IGBT and SiC MOSFET based on hybrid switch,'' Chin. J. Electr. Eng., vol. 5, no. 3, pp. 20-29, Sep. 2019. open in new tab
  36. J. O. Gonzalez, R. Wu, S. Jahdi, and O. Alatise, ''Performance and reliabil- ity review of 650V and 900V silicon and SiC devices: MOSFETs, Cascode JFETs and IGBTs,'' IEEE Trans. Ind. Electron., to be published. open in new tab
Sources of funding:
  • Statutory activity/subsidy
Verified by:
Gdańsk University of Technology

seen 281 times

Recommended for you

Meta Tags