A random signal generation method for microcontrollers with DACs - Publication - Bridge of Knowledge

Search

A random signal generation method for microcontrollers with DACs

Abstract

A new method of noise generation based on software implementation of a 7-bit LFSR based on a common polynomial PRBS7 using microcontrollers equipped with internal ADCs and DACs and a microcontroller noise generator structure are proposed in the paper. Two software applications implementing the method: written in ANSI C and based on the LUT technique and written in AVR Assembler are also proposed. In the method the ADC results are used to reseed the LFSR after its each full work cycle, what improves randomness of generated data, which results in a greater similarity of the generated random signal to white noise, what was confirmed by the results of experimental research. The noise generator uses only the internal devices of the microcontroller, hence the proposed solution does not introduce hardware redundancy to the system.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 663 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Metrology and Measurement Systems no. 25, pages 675 - 687,
ISSN: 0860-8229
Language:
English
Publication year:
2018
Bibliographic description:
Czaja Z., Kowalewski M.: A random signal generation method for microcontrollers with DACs// Metrology and Measurement Systems. -Vol. 25, nr. 4 (2018), s.675-687
DOI:
Digital Object Identifier (open in new tab) 10.24425/mms.2018.124880
Bibliography: test
  1. Saluja, K.K. (1987). Linear feedback shift registers theory and applications. Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 4.
  2. Walczak, J., Stępień, R. (2012). Discrete Modeling of LFSR Registers. Elektryka, 2(222), 97-104.
  3. D'Alvano, F., Badra, R.E. (1996). A Simple Low-Cost Laboratory Hardware for Noise Generation. IEEE Transactions on Education, 39(2), 280-281. open in new tab
  4. Mita, R., Palumbo, G., Pennisi, S.M., Poli, M. (2002). A Novel Pseudo Random Bit Generator for Cryptography Applications. The 9th IEEE International Conference on Electronics, Circuits and Sys- tems, 489-492. open in new tab
  5. Cypress Semiconductor Corporation. (2015). 8-Bit Pseudo Random Sequence Generator Datasheet, Document Number: 001-13579 Rev. *J. open in new tab
  6. Mondal, S., Barman, A.D., Datta, A.K. (2012). ARM7 Microcontroller Based Digital PRBS Genera- tor. International Journal of Electrical, Electronics and Computer Engineering, 1(2), 55-59.
  7. Walczak, J., Stępień, R. (2010). Microprocessor Based White Noise Generator. Elektryka, 2(214), 97-104. open in new tab
  8. Babu, P., Soumya, S.S., Sudheesh, K., Sujeesh, K., Syamily, P.S. (2014). Design of a Microcontroller Based Random Number Generator. International Journal of Advanced Research in Electrical, Elec- tronics and Instrumentation Engineering, 3(2), 7614-7618.
  9. Fimml, P. (2013). HOWTO: A Simple Random Number Generator for the ATmega1280 Microcon- troller. https://ti.tuwien.ac.at/ecs/teaching/courses/mclu_2014/misc/task1-specific-stuff/rand_howto.pdf. open in new tab
  10. Czaja, Z. (2013). Self-Testing of Analog Parts Terminated by ADCs Based on Multiple Sampling of Time Responses. IEEE Transactions on Instrumentation and Measurement, (62), 3160-3167. open in new tab
  11. Toczek, W., Czaja, Z. (2011). Diagnosis of fully differential circuits based on a fault dictionary imple- mented in the microcontroller systems. Microelectronics Reliability, 8(51), 1413-1421. open in new tab
  12. Czaja, Z. (2016). An Implementation of a Compact Smart Resistive Sensor Based on a Microcontroller with an Internal ADC. Metrol. Meas. Syst., 23(2), 255-238. open in new tab
  13. Czaja, Z. (2012). A microcontroller system for measurement of three independent components in impedance sensors using a single square pulse. Sensors and Actuators A, (173), 284-292. open in new tab
  14. Czaja, Z. (2018). Time-domain measurement methods for R, L and C sensors based on a versatile direct sensor-to-microcontroller interface circuit. Sensors and Actuators A, (274), 199-210. open in new tab
  15. Jevtic, N., Vujo, Drndarevic, V. (2013). Design and implementation of plug-and-play analog resistance temperature sensor. Metrol. Meas. Syst., 20(4), 565-580. open in new tab
  16. Kokolanski, Z., Gavrovski, C., Dimcev, V., Makraduli, M. (2013). Hardware techniques for improving the calibration performance of direct resistive sensor-to-microcontroller interface. Metrol. Meas. Syst., 20(4), 529-542. open in new tab
  17. Microchip Technology Inc. (2017). 8-bit Atmel XMEGA AU Microcontroller, XMEGA AU MAN- UAL. http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8331-8-and-16-bit-AVR-Microcon troller-XMEGA-AU_Manual.pdf.
  18. Tavacoli J. Silicon Driven Signal Integrity Tools. Altera (2005). ftp://ftp.altera.com/outgoing/down load/education/events/2005_highspeed_altera.pdf open in new tab
  19. Mutagi, R.N. (1996). Pseudo noise sequences for engineers. Electronics & Communication Engineer- ing Journal, 79-87. open in new tab
  20. Atmel Corporation. (2015). AVR Libc Reference Manual. [online] https://www.microchip.com/web doc/AVRLibcReferenceManual/index.html. open in new tab
  21. Atmel Corporation. (2016). AVR Assembler. [online] https://www.microchip.com/webdoc/GUID- E06F3258-483F-4A7B-B1F8-69933E029363/index.html. open in new tab
  22. Atmel Corporation. (2016). AVR Instruction Set Manual. http://ww1.microchip.com/downloads/en/ DeviceDoc/Atmel-0856-AVR-Instruction-Set-Manual.pdf. open in new tab
  23. Keysight Technologies. (2017). U2500A Series USB Modular Simultaneous Sampling Multi- function DAQ Devices -Data Sheet. https://literature.cdn.keysight.com/litweb/pdf/5991-0651EN. pdf?id=2205971. open in new tab
Verified by:
Gdańsk University of Technology

seen 132 times

Recommended for you

Meta Tags