Analiza doświadczalna i numeryczna paneli warstwowych z okładzinami z płyty cementowo-magnezjowej i rdzeniem z polistyrenu ekspandowanego - Publication - Bridge of Knowledge

Search

Analiza doświadczalna i numeryczna paneli warstwowych z okładzinami z płyty cementowo-magnezjowej i rdzeniem z polistyrenu ekspandowanego

Abstract

Panele warstwowe są chętnie stosowane w budownictwie ze względu na wysoki stosunek wytrzymałości do masy, oraz łatwość i szybkość montażu. Idea przekroju warstwowego polega na łączeniu cienkich i wytrzymałych okładzin z lekkim rdzeniem. Dobór materiałów składowych pozwala na swobodę kształtowania cech paneli. W rozprawie opisano panele z okładzinami z płyty cementowo magnezjowej i rdzeniem z polistyrenu ekspandowanego, charakteryzujące się niewrażliwością na korozję biologiczną, wysoką izolacyjnością cieplną i niską szkodliwością dla środowiska. Dostosowywanie asortymentu paneli do potrzeb rynku wymaga częstych zmian wymiarów, co prowadzi do zmian w ich zachowaniu i wymaga przeprowadzania kosztownych testów laboratoryjnych. Celem rozprawy było stworzenie modelu numerycznego, pozwalającego na wiarygodny opis zachowania paneli o różnej geometrii, pod działaniem różnych obciążeń. Do obliczeń wykorzystano komercyjny pakiet ABAQUS i procedurę autorską, umożliwiającą odwzorowanie zachowania warstw kompozytu w różnych stanach naprężenia. Stworzono nieliniowy model obliczeniowy, odwzorowujący zaobserwowane mechanizmy zniszczenia; jego parametry ustalono na podstawie badań w małej skali i eksperymentów numerycznych. Model poddano walidacji przez porównanie z wynikami badań zginania i ściskania paneli w skali naturalnej. Uzyskano wyniki będące w zadowalającej zgodności z rezultatami doświadczalnymi.

Cite as

Full text

download paper
downloaded 166 times
Publication version
Accepted or Published Version
License
Copyright (Author(s))

Keywords

Details

Category:
Thesis, nostrification
Type:
praca doktorska pracowników zatrudnionych w PG oraz studentów studium doktoranckiego
Language:
Polish
Publication year:
2017
Bibliography: test
  1. Monografie, artykuły oraz inne publikacje 1. [Abaqus 2010]
  2. Abaqus Analysis User's Manual (6.10), Dassault Systèmes, 2010. 2. [Abdelrahman i inni 2008] Abdelrahman G.E., Shohei K., Yoshimichi T, Fumio T. Small-strain stress-strain properties od expanded polystyrene geofoam. Soils and Foundations, 2008, 48-1: 61-71. 3. [Akour i Maaitah 2010] open in new tab
  3. Akour S., Maaitah H. Effect of Core Material Stiffness on Sandwich Panel Behavior Beyond the Yield Limit. Proceedings of the World Congress on Engineering, June 30-July 2, 2010, London. 4. [Akour i Maaitah 2012] open in new tab
  4. Akour S., Maaitah H. Finite Element Analysis of Loading Area Effect on Sandwich Panel Behaviour Beyond the Yield Limit. Finite Element Analysis -New Trends and Developments. InTech, 2012, 353-376. open in new tab
  5. Allen H.G. Analysis and Design of Structural Sandwich Panels. Pergamon Press, London, 1969. 6. [Altenbach i Sadowski 2015]
  6. Altenbach H., Sadowski T. Failure and Damage Analysis of Advanced Materials. CISM, Udine, 2015. 7. [Alwin 2002] open in new tab
  7. Alwin H.Z. Development of a method to analyze structural insulated panels under transverse loading. Praca magisterska, Washington State University, Washington, 2002. 8. [Ashby 1983]
  8. Ashby M.F. The mechanical properties of cellular solids. Metallurgical Transactions A, 1983, 14A: 1755-1769. open in new tab
  9. Atmatzidis i inni 2001] open in new tab
  10. Atmatzidis D.K., Missirlis E.G., Chrysikos D.A. An investigation of EPS geofoam behaviour in compression. Proceedings of the 3rd International Conference EPS Geofoam, 10-12 December, 2001, Salt Lake City.
  11. Bažant Z., Planas J. Fracture and size effect in concrete and other quasi-brittle materials. CRC Press, 1998. 11. [Bischoff i Ramm 2000] open in new tab
  12. Bischoff M., Ramm E. On the physical significance of higher order kinematic and static variables in a three-dimensional shell formulation. International Journal of Solids and Structures, 2000, 37: 6933-6960. open in new tab
  13. i inni 2004] open in new tab
  14. Bischoff M., Wall W.A., Bletzinger K.-U., Ramm E. Models and Finite Elements for Thin-walled Structures. Encyclopedia of Computational Mechanics. John Wiley & Sons, 2004, 59-137. open in new tab
  15. Błaszczuk J., Pozorski Z. The analysis of the influence of core compression effect on the determination of the shear modulus of the sandwich panel core. Scientific Research of the Institute of Mathematics and Computer Science, 2011, 2(11): 5-13. open in new tab
  16. Borsellino C., Calabrese L., Valenza A. Experimental and numerical evaluation of sandwich composite structures. Composites Science and Technology, 2004, 64: 1709-1715. open in new tab
  17. 15. [Butt 1998] Butt A.S. Experimental study on the flexural behavior of structural insulated sandwich timber panels. Praca magisterska, University of Engineering and Technology, Pakistan, 1998.
  18. Chen i Hao 2014] open in new tab
  19. Chen W., Hao H. Experimental and numerical study of composite lightweight structural insulated panel with expanded polystyrene core against windborne debris impacts. Materials and Design, 2014, 60: 409-423. open in new tab
  20. [Chuda-Kowalska 2011] Chuda-Kowalska M. Metodyka eksperymentalnych badań trójwarstwowych płyt z cienkimi okładzinami. Rozprawa doktorska, Politechnika Poznańska, Poznań, 2011. 18. [Chuda-Kowalska i Garstecki 2011] open in new tab
  21. Chuda-Kowalska M., Garstecki A. Wyznaczanie stałych materiałowych dla płyt warstwowych z rdzeniem PUR. Konstrukcje Zespolone t. IX, Zielona Góra, 2011, 33-44.
  22. Chuda-Kowalska M., Gajewski T., Grabowski T. Mechanical characterization of orthotropic elastic parameters of a foam by the mixed experimental-numerical analysis. Journal of Theoretical and Applied Mechanics, 2015, 53(2): 383-394. 20. [Chuda-Kowalska i Malendowski 2016a] open in new tab
  23. Chuda-Kowalska M., Malendowski M. The influence of rectangular openings on the structural behaviour of sandwich panels with anisotropic core. Journal of Applied Mathematics and Computational Mechanics, 2016, 15(3): 15-25. open in new tab
  24. [Chuda-Kowalska i Malendowski 2016b] open in new tab
  25. Chuda-Kowalska M., Malendowski M. Sensitivity analysis of behavior of sandwich plate with PU foam core with respect to boundary conditions and material model. Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues. CRC Press, London, 2016, 125-128. 22. [Cieciura i Zacharski 2007] open in new tab
  26. Cieciura M., Zacharski J. Metody probabilistyczne w ujęciu praktycznym. Vizja Press & IT, 2007.
  27. Deshpande i Fleck 2001] Deshpande V.S., Fleck N.A. Multi-axial yield behaviour of polymer foams. Acta Materialia, 2001, 49: 1859-1866. 24. [Duškov 1997]
  28. Duškov M. Materials Research on EPS20 and EPS15 Under Representative Conditions in Pavement Structures. Geotextiles and Geomembranes, 1997, 15: 147-181. open in new tab
  29. [EDO 1992] EDO. Expanded Polystyrene Construction Method. Riko Tosho Publishers, Tokyo, 1992. 26. [Elragi 2006] Elragi A.F. Selected Engineering Properties and Applications of EPS Geofoam. Softoria, 2006. 27. [Flanagan i Belytschko 1981] open in new tab
  30. Flanagan D.P., Belytschko T. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. International Journal for Numerical Methods in Engineering, 1981, 17: 679-706. 28. [Frostig 1993] Frostig Y. On stress concentration in the bending of sandwich beams with transversely flexible core. Composite Structures, 1993, 24: 161-169.
  31. Gdoutos i inni 2002] open in new tab
  32. Gdoutos E.E., Daniel I.M., Wang K.A. Failure of cellular foams under multiaxial loading. Composites: Part A, 2002, 33: 163-176. open in new tab
  33. 30. [Gielen 2008] Gielen A.W.J. A PVC-foam material model based on a thermodynamically elasto-plastic-damage framework exhibiting failure and crushing. International Journal of Solids and Structures, 2008, 45: 1896-1917. open in new tab
  34. Gnip i inni 2007a] open in new tab
  35. Gnip I.Y., Vejelis S., Kersulis V., Vaitkus S. Deformability and tensile strength of expanded polystyrene under short-term loading. Polymer Testing, 2007, 26: 886-895. open in new tab
  36. Gnip i inni 2007b] open in new tab
  37. Gnip I.J., Veyelis S.A., Kersulis V.I., Vaitkus S.I. Deformability and strength of expanded polystyrene (EPS) under short-term shear loading. Mechanics of Composite Materials, 2007, 43-1: 85-94. open in new tab
  38. Gnip i inni 2007c] open in new tab
  39. Gnip I.J., Vaitkus S.I., Kersulis V.I., Veyelis S.A. Deformability of expanded polystyrene under short-term compression. Mechanics of Composite Materials, 2007, 43(5): 433-444. open in new tab
  40. [Jasion i Magnucki 2012] Jasion P., Magnucki K. Face wrinkling of sandwich beams under pure bending. Journal of Theoretical and Applied Mechanics, 2012, 50(4): 933-941.
  41. Jasion P., Magnucka-Blandzi E., Szyc W., Magnucki K. Global and local buckling of sandwich circular and beam-rectangular plates with metal foam core. Thin-Walled Structures, 2012, 61: 154-161. open in new tab
  42. Kayello i inni 2017] open in new tab
  43. Kayello A., Ge H., Athienitis A., Rao J. Experimental study of thermal and airtightness performance of structural insulated panel joints in cold climates. Building and Environment, 2017, 115: 345-357. open in new tab
  44. Kreja I. A literature review on computational models for laminated composite and sandwich panels. Central European Journal of Engineering, 2011, 1(1): 59-80. open in new tab
  45. Łukasz Smakosz -Analiza doświadczalna i numeryczna paneli warstwowych... open in new tab
  46. Kreja I., Schmidt R., Reddy J.N. Finite elements based on a first-order shear deformation moderate rotation shell theory with applications to the analysis of composite structures. International Journal of Non-Linear Mechanics, 1997, 32(6): 1123-1142. open in new tab
  47. Leo i inni 2008] open in new tab
  48. Leo C.J., Kumruzzaman M., Wong H., Yin J.H. Behavior of EPS geofoam in true triaxial compression tests. Geotextiles and Geomembranes, 2008, 26: 175-180. open in new tab
  49. [Lovinger i Frostig 2004] Lovinger Z., Frostig Y. High order behavior of sandwich plates with free edges -edge effects. International Journal of Solids and Structures, 2004, 41: 979-1004. 41. [Lubliner 2006] Lubliner J. Plasticity theory. Pearson Education, 2006. 42. [Magnucki i inni 2014] open in new tab
  50. Magnucki K., Jasion P., Magnucka-Blandzi E., Wasilewicz P. Theoretical and experimental study of a sandwich circular plate under pure bending. Thin-Walled Structures, 2014, 79: 1-7. open in new tab
  51. 43. [Manalo 2013] Manalo A. Structural behaviour of a prefabricated composite wall system made from rigid polyurethane foam and Magnesium Oxide board. Construction and Building Materials, 2013, 41: 642-653. open in new tab
  52. Martin J.W. Materials for engineering. Third edition. Woodhead Publishing Limited, 2006. 45. [Mercado i Sikarskie 1999] open in new tab
  53. Mercado L.L., Sikarskie D.L. On the Response of a Sandwich Panel with a Bilinear Core. Mechanics of Composite Materials and Structures, 1999, 6: 57-67. 46. [Mills 2007] Mills N.J. Polymer Foams Handbook: Engineering and Biomechanics Applications and Design Guide. Butterworth-Heinemann, 2007. 47. [Miśkiewicz i inni 2016]
  54. Miśkiewicz M., Daszkiewicz K., Ferenc T., Witkowski W., Chróścielewski J. Experimental tests and numerical simulations of full scale composite sandwich segment of a foot-and cycle-bridge. Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues. CRC Press, London, 2016, 401-404. open in new tab
  55. [Mıhlayanlar i inni 2008] Mıhlayanlar E., Dilmaç Ş., Güner A. Analysis of the effect of production process parameters and density of expanded polystyrene insulation boards on mechanical properties and thermal conductivity. Materials and Design, 2008, 29: 344-352. open in new tab
  56. Mostafa i inni 2014] open in new tab
  57. Mostafa A., Shankar K., Morozov E.V. Experimental, Theoretical and Numerical Investigation of the Flexural Behaviour of the Composite Sandwich Panels with PVC Foam Core. Applied Composite Materials, 2014, 21: 661-675. open in new tab
  58. Mousa i Uddin 2011a]
  59. Mousa M.A., Uddin N. Global buckling of composite structural insulated wall panels. Materials and Design, 2011, 32: 766-772. open in new tab
  60. Mousa i Uddin 2011b]
  61. Mousa M.A., Uddin N. Flexural Behavior of Full-Scale Composite Structural Insulated Floor Panels. Advanced Composite Materials, 2011, 20: 547-567. open in new tab
  62. Mousa i Uddin 2012]
  63. Mousa M.A., Uddin N. Structural behavior and modeling of full-scale composite structural insulated wall panels. Engineering Structures, 2012, 41: 320-334. open in new tab
  64. i Romo 2009] Ossa A., Romo M.P. Micro-and macro-mechanical study of compressive behavior of expanded polystyrene geofoam. Geosynthetics International, 2009, 16-5: 327-338.
  65. [Padade i Mandal 2012] Padade A.H., Mandal J.N. Behavior of Expanded Polystyrene (EPS) Geofoam Under Triaxial Loading Conditions. Electronic Journal of Geotechnical Engineering, 2012, 17: 2543-2553. open in new tab
  66. Papakaliatakis G.E., Karavagelas N. The Accuracy of the ABAQUS FE Numerical Modeling for Sandwich Beams with Foam Core. Computational Methods in Science and Engineering, Advances in Computational Science, Vol. 2. American Institute of Physics, 2009, 165-168. 56. [Pozorska i Pozorski 2015] open in new tab
  67. Pozorska J., Pozorski Z. The influence of the core orthotropy on the wrinkling of sandwich panels. Journal of Applied Mathematics and Computational Mechanics, 2015, 14(4): 133-138. open in new tab
  68. 57. [Pozorski 2016] Pozorski Z. Sandwich panels in civil engineering -theory, testing and design. Rozprawa habilitacyjna. Wydawnictwo Politechniki Poznańskiej, Poznań, 2016. 58. [Pozorski i Pozorska 2016] open in new tab
  69. Pozorski Z., Pozorska J. Stress redistribution at the support of a transversely loaded sandwich panel. Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues. CRC Press, London, 2016, 485-488. open in new tab
  70. Pyrzowski Ł., Sobczyk B., Witkowski W., Chróścielewski J. Three-point bending test of sandwich beams supporting the GFRP footbridge design process -validation. Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues. CRC Press, London, 2016, 485-488. open in new tab
  71. [Roberts-Tompkins 2009] Roberts-Tompkins A.L. Viscoelastic analysis of sandwich beams having aluminum and fiber-reinforced polymer skins with a polystyrene foam core. Praca magisterska, Texas A&M University, 2009. 61. [Salami i inni 2014] Salami S.J., Sadighi M., Shakeri M. Improved extended high order analysis of sandwich beams with a bilinear core shear behavior. Journal of Sandwich Structures and Materials, 2014, 16(6): 633-668.
  72. 62. [Sharaf 2010] Sharaf T.A.M. Flexural behaviour of sandwich panels composed of polyurethane core and GFRP skins and ribs. Rozprawa doktorska, Queen's University, Kingston, 2010. 63. [Skrzypek 1986] Skrzypek J. Plastyczność i pełzanie: teoria, zastosowania, zadania. PWN, Warszawa, 1986. 64. [Smakosz i Tejchman 2014]
  73. Smakosz Ł., Tejchman J. Evaluation of strength, deformability and failure mode of composite structural insulated panels. Materials and Design, 2014, 54: 1068-1082. open in new tab
  74. Studziński R., Pozorski Z., Garstecki A. Structural behavior of sandwich panels with asymmetrical boundary conditions. Journal of Constructional Steel Research, 2015, 104: 227-234. open in new tab
  75. Sumińska K., Sobiech S. Doświadczalna i teoretyczna analiza nowych paneli kompozytowych stosowanych w budownictwie. Praca magisterska, Politechnika Gdańska, Gdańsk, 2012. 67. [Tatarczak i inni 2014]
  76. Tatarczak A., Brzozowski J., Jaroszyńska-Wolińska J. Badania wpływu dodatków na właściwości materiałów na bazie cementu Sorela. Materiały kompozytowe i możliwości ich zastosowania w budownictwie tradycyjnym i energooszczędnym. Politechnika Lubelska, Lublin, 2014, 85-104. 68. [Tejchman i Bobiński 2013]
  77. Tejchman J., Bobiński J. Continuous and Discontinuous Modelling of Fracture in Concrete using FEM. Springer-Verlag, Berlin, Heidelberg, 2013. open in new tab
  78. [Thomsen i Frostig 1997] Thomsen O.T., Frostig Y. Localized bending effects in sandwich panels: photoelastic investigation versus high-order sandwich theory results. Composite Structures, 1997, 37(1): 97-108. open in new tab
  79. i inni 2010] open in new tab
  80. Trandafir A.C., Bartlett S.F., Lingwall B.N. Behavior of EPS geofoam in stress-controlled cyclic uniaxial tests. Geotextiles and Geomembranes, 2010, 28: 514-524 open in new tab
  81. Tuwair H., Hopkins M., Volz J., ElGawady M.A., Mohamed M., Chandrashekhara K., Birman V. Evaluation of sandwich panels with various polyurethane foam-cores and ribs. Composites Part B, 2015, 79: 262-276. open in new tab
  82. 72. [Vaidya 2009] Vaidya A.S. Lightweight composites for modular panelized construction. Rozprawa doktorska, The University of Alabama, Birmingham, 2009. open in new tab
  83. Łukasz Smakosz -Analiza doświadczalna i numeryczna paneli warstwowych... open in new tab
  84. Vėjelis S., Vaitkus S. Investigation of bending modulus of elasticity of expanded polystyrene (EPS) slabs. Materials Science, 2006, 12(1): 22-24.
  85. Wong i Leo 2006] open in new tab
  86. Wong H., Leo C.J. A simple elastoplastic hardening constitutive model for EPS geofoam. Geotextiles and Geomembranes, 2006, 24: 299-310. open in new tab
  87. Zeng i inni 2015]
  88. Zeng X., Yu H., Wu C. A mix design and strength analysis of basic magnesium sulphate cement concrete. W: Advances in Civil Engineering and Building Materials IV, edytorzy: S.Y. Chang i inni. CRC Press, 2015, 79-82. open in new tab
  89. Zou i Leo 1998]
  90. Zou Y., Leo C.J. Laboratory studies on the engineering properties of expanded polystyrene (EPS) material for geotechnical applications. Proceedings of the 2nd International Conference on Ground Improvement Techniques, Singapore, 7-9 October, 1998, 581-588.
  91. Kody projektowe, normy oraz specyfikacje 1. [ASTM C364] open in new tab
  92. ASTM C364 / C364M -07(2012): Standard Test Method for Edgewise Compressive Strength of Sandwich Constructions, 2012. 2. [ASTM C393] open in new tab
  93. ASTM C393 / C393M -11e1: Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure. 3. [ASTM D7249] open in new tab
  94. ASTM D7249/D7249M -Standard Test Method for Facing Properties of Sandwich Constructions by Long Beam Flexure. open in new tab
  95. [BS 5669-1] BS 5669-1:1989: Particleboard. Methods of sampling, conditioning and test, 1989. 5. [ECCS TWG 7.9] ECCS TWG 7.9: European recommendations for sandwich panels. Part I: design, 2000. 6. [EN 826] EN 826:1998: Thermal insulating products for building applications - Determination of compression behaviour, 1998. open in new tab
  96. Smakosz Ł., Kreja I. Experimental and numerical evaluation of mechanical behaviour of composite structural insulated wall panels under edgewise compression. Advances in mechanics: theoretical, computational and interdisciplinary issues. CRC Press, London, 2016. open in new tab
  97. Smakosz Ł., Kreja I. Experimental and numerical evaluation of mechanical behaviour of composite structural insulated panels. Recent Advances in Computational Mechanics. CRC Press, London, 2014. open in new tab
  98. Smakosz Ł., Tejchman J. Evaluation of strength, deformability and failure mode of composite structural insulated panels. Materials and Design, 2014, 54: 1068-1082. open in new tab
  99. Smakosz Ł., Tejchman J. Badania wytrzymałościowe na zginanie i ściskanie nowoczesnych budowlanych paneli kompozytowych SIP. Inżynieria i Budownictwo, 2012, 12: 663-665.
  100. Smakosz Ł., Tejchman J. Badania wytrzymałościowe nowych paneli kompozytowych w budownictwie mieszkaniowym. Przegląd Budowlany, 2012, 7-8: 43-47.
  101. Smakosz Ł. Analiza eksperymentalna i numeryczna kompozytowych płyt warstwowych. Zeszyty Naukowe Politechniki Gdańskiej, 2012, 625
  102. Smakosz Ł., Kreja I. Experimental and numerical evaluation of mechanical behaviour of composite structural insulated wall panels submitted to edgewise compression. 3rd Polish Congress of Mechanics and 21st International Conference on Computer Methods in Mechanics. 08-11.09.2015, Gdańsk, Poland. open in new tab
  103. Smakosz Ł., Kreja I. Panele warstwowe z okładzinami z płyty magnezjowej -analiza nieliniowa. VII Sympozjon: Kompozyty, konstrukcje warstwowe. 15-18.10.2014, Wrocław, Polska.
  104. Smakosz Ł., Kreja I. Experimental and numerical evaluation of mechanical behaviour of composite structural insulated panels. 20th International Conference on Computer Methods in Mechanics. 27-31.08.2013, Poznań, Poland. open in new tab
  105. Smakosz Ł., Kreja I. Panele warstwowe z okładzinami z płyty magnezjowej -analiza doświadczalna i numeryczna. VI Sympozjon: Kompozyty, konstrukcje warstwowe. 08-10.11.2012, Wrocław, Polska.
  106. Smakosz Ł., Wawrzynowicz A., Purowski J., Krzaczek M., Tejchman J. Experimental and numerical evaluation of composite structural insulated wall panels. 6th International Conference on FRP Composites in Civil Engineering. 13-15.06. 2012, Venice, Italy.
  107. Smakosz Ł., Wawrzynowicz A., Krzaczek M., Tejchman J. Experimental and numerical evaluation of composite structural insulated wall panels. 15th European Conference on Composites Materials. 24-28.06. 2012, Venice, Italy.
Verified by:
Gdańsk University of Technology

seen 117 times

Recommended for you

Meta Tags