Assessing vehicle restraint systems on horizontal curves - Publication - Bridge of Knowledge

Search

Assessing vehicle restraint systems on horizontal curves

Abstract

Horizontal curves, an element of road infrastructure, have a statistically high number of accidents. Considering that horizontal curves in the last ten years have had app. 10% of all road accidents representing app. 14% of all fatalities on Polish roads, the issue is serious and requires more research and proper road safety treatments. Data for 2007 - 2016 show that in the case of accidents on horizontal curves app. 45% of the fatalities happened as a result of crashing into roadside obstacles such as signs and first of all trees. This shows that horizontal curves require road safety equipment, and specifically, safety barriers. Key to this is using the right equipment and the right parameters. To achieve that, full-scale crash tests should be conducted to be followed by numerical tests. The article will present a synthesis of the available research conducted in Poland and abroad. An assessment will be made of four crash tests of TB32 with barriers that have a steel and cable guardrail. They are the outcome of the RID 3A "Road safety equipment" project called RoSE. Building on these tests, numerical test results will be presented

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cite as

Full text

download paper
downloaded 133 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
MATEC Web of Conferences no. 231, pages 1 - 8,
ISSN: 2261-236X
Language:
English
Publication year:
2018
Bibliographic description:
Budzyński M., Bruski D.: Assessing vehicle restraint systems on horizontal curves// MATEC Web of Conferences -Vol. 231, (2018), s.1-8
DOI:
Digital Object Identifier (open in new tab) 10.1051/matecconf/201823101004
Bibliography: test
  1. R. Fuller, Towards a general theory of driver behaviour, Accid. Anal. Prev. 37 pp. 461-72 (2005). doi:10.1016/j.aap.2004.11.003 open in new tab
  2. P. Larsson, S.W.A. Dekker, C. Tingvall, The need for a systems theory approach to road safety, Saf. Sci. 48 pp. 1167-1174 (2010). doi:10.1016/j.ssci.2009.10.006 open in new tab
  3. D.W. Harwood, F.M. Council, E. Hauer, W.E. Hughes, A. Vogt, Prediction of the Expected Safety Performance of Rural Two-Lane Highways (Federal Highway Administration U.S. Department of Transportation, 2000)
  4. Road protection score (RPS) method and pilot results (EuroRAP, 2002) open in new tab
  5. W. Kustra, K. Jamroz, M. Budzynski, Safety PL-A Support Tool for Road Safety Impact Assessment, Transp. Res. Procedia. 14 pp. 3456-3465 (2016). doi:10.1016/J.TRPRO.2016.05.308 open in new tab
  6. MATEC Web of Conferences 231, 01004 (2018) https://doi.org/10.1051/matecconf/201823101004 GAMBIT 2018 open in new tab
  7. A. Fernandes, J. Neves, An approach to accidents modeling based on compounds road environments, Accid. Anal. Prev. 53 pp. 39-45 (2013). doi:10.1016/j.aap.2012.12.041 open in new tab
  8. S. Cafiso, A. Di Graziano, G. Di Silvestro, G. La Cava, B. Persaud, Development of comprehensive accident models for two-lane rural highways using exposure, geometry, consistency and context variables, Accid. Anal. Prev. 42 pp. 1072-1079 (2010). doi:10.1016/j.aap.2009.12.015 open in new tab
  9. J.N. Ivan, P.E. Garder, Z. Deng, C. Zhang, The effect of segment characteristics on the severity of head-on crashes on two-lane rural highways (University of Connecticut, University of Maine, 2006)
  10. M. Garnowski, H. Manner, On factors related to car accidents on German Autobahn connectors, Accid. Anal. Prev. 43 pp. 1864-1871 (2011). doi:10.1016/J.AAP.2011.04.026 open in new tab
  11. J. Lee, F. Mannering, Impact of roadside features on the frequency and severity of run-off-roadway accidents: an empirical analysis, Accid. Anal. Prev. 34 pp. 149-161 (2002). doi:10.1016/S0001-4575(01)00009-4 open in new tab
  12. Accident modification factors (Federal Highway Administration, U.S. Department of Transportation, 2005) open in new tab
  13. C. Wang, M.A. Quddus, S.G. Ison, Predicting accident frequency at their severity levels and its application in site ranking using a two-stage mixed multivariate model, Accid. Anal. Prev. 43 pp. 1979-1990 (2011). doi:10.1016/J.AAP.2011.05.016 open in new tab
  14. A. Jacob, R. Dhanya, M.V.L.R. Anjaneyulu, Geometric Design Consistency of Multiple Horizontal Curves on Two-lane Rural Highways, Procedia -Soc. Behav. Sci. 104 pp. 1068-1077 (2013). doi:10.1016/J.SBSPRO.2013.11.202 open in new tab
  15. M.A. Abdel-Aty, A.E. Radwan, Modeling traffic accident occurrence and involvement, Accid. Anal. Prev. 32 pp. 633-642 (2000). doi:10.1016/S0001- 4575(99)00094-9 open in new tab
  16. M.F. Muhammad, H.J. Mohammed, Concrete road barriers subjected to impact loads: An overview, Lat. Am. J. Solids Struct. 12 pp. 1824-1858 (2015). doi:10.1590/1679- 78251783 open in new tab
  17. S. Mondal, Y. Lucet, W. Hare, Optimizing horizontal alignment of roads in a specified corridor, Comput. Oper. Res. 64 pp. 130-138 (2015). doi:10.1016/J.COR.2015.05.018 open in new tab
  18. A Guide for Reducing Collisions on Horizontal Curves. NCHRP Report 500(7) (Transportation Research Board, Washington, D.C., 2004). doi:10.17226/13545 open in new tab
  19. S. Othman, R. Thomson, G. Lannér, Safety Analysis of Horizontal Curves Using Real Traffic Data, J. Transp. Eng. 140 pp. 04014005 (2014). doi:10.1061/(ASCE)TE.1943- 5436.0000626 open in new tab
  20. C. Jurewicz, R. Excel, Application of a Crash-predictive Risk Assessment Model to Prioritise Road Safety Investment in Australia, Transp. Res. Procedia. 14 pp. 2101- 2110 (2016). doi:10.1016/J.TRPRO.2016.05.225 open in new tab
  21. G. Yannis, A. Dragomanovits, A. Laiou, T. Richter, S. Ruhl, F. La Torre, L. Domenichini, D. Graham, N. Karathodorou, H. Li, Use of Accident Prediction Models in Road Safety Management -An International Inquiry, Transp. Res. Procedia. 14 pp. 4257-4266 (2016). doi:10.1016/J.TRPRO.2016.05.397 open in new tab
  22. T. Esposito, R. Mauro, F. Russo, G. Dell'Acqua, Speed prediction models for sustainable road safety management, Procedia -Soc. Behav. Sci. 20 pp. 568-576 (2011). doi:10.1016/J.SBSPRO.2011.08.063 open in new tab
  23. M. Klasztorny, K. Zielonka, D.B. Nycz, P. Posuniak, R. Romanowski, Experimental and simulation crash tests of the SP-05/2 barrier in the concave horizontal curve, in: XIV Sci. Tech. Conf. Comput. Technol. Eng., (2016) open in new tab
  24. R.P. Nasution, R.A. Siregar, K. Fuad, A.H. Adom, The Effect of ASI (Acceleration Severity Index) to Different Crash Velocities, in: Proc. Int. Conf. Appl. Des. Mech. Eng., pp. 11-13 (2009)
  25. W. Borkowski, Z. Hryciów, P. Rybak, J. Wysocki, Analysis of the effectiveness of concrete protection barriers on the road curve, Mech. Rev. LXXI pp. 21-24 (2012) open in new tab
  26. D. Nycz, Modeling and numerical tests of crash tests of N2-W4-A class barriers on road curves, Military University of Technology, Warsaw, 2015 open in new tab
  27. D. Marzougui, U. Mahadevaiah, F. Tahan, C.D. Kan, R. McGinnis, R. Powers, Guidance for selection, use and maintenance of cable barrier system. NCHRP Raport 711 (Transport Research Board, Washington, USA, 2012) open in new tab
  28. PN-EN 1317-1 Road restraint systems, Part 1: Terminology and general criteria for test methods, (2010) open in new tab
  29. PN-EN 1317-2 Road restraint systems, Part 2: Performance classes, impact test acceptance criteria and test methods for safety barriers (2010) open in new tab
  30. J.O. Hallquist, LS-DYNA Theory Manual (Livermore Software Technology Corporation, 2006)
  31. MATEC Web of Conferences 231, 01004 (2018) https://doi.org/10.1051/matecconf/201823101004 GAMBIT 2018 open in new tab
Verified by:
Gdańsk University of Technology

seen 134 times

Recommended for you

Meta Tags